Let the kinetic energy of each block be T1 and T2
Total energy of the system be T=T1+T2
T1=2m1v2
T2=2m2v2
x=2lsinθcosϕ
y=2lsinθcosϕ
Now, taking the differentiation,
x˙2+y˙2+z˙2=v2....(i)
x˙=2l(cosϕcosθθ˙−sinθsinϕϕ˙)
y˙=2l(sinϕcosθθ˙−sinθcosϕϕ˙)
z˙=−2lsinθθ˙
Now, substituting the values in (i)
⇒x˙2+y˙2+z˙2=4l2(cos2ϕcos2θθ˙2+sin2ϕsin2θϕ˙2+sin2ϕcos2θθ˙2−sin2θcos2ϕϕ˙2+sin2θθ˙2)
v2=4l2(θ˙2+sin2θϕ˙2)
Now, substituting the value of v2=ma2ψ˙2+4ml2(θ˙2+sin2θϕ˙2)
Comments