Question #168017

Two bodies m1 and m2 attached to each other by weightless rigid rod of length a can slide along fixed axes which formed angle with horizontal axis (as drawn shows). Find the Lagrangian of this system?


1
Expert's answer
2021-03-03T07:56:48-0500

Let the kinetic energy of each block be T1T_1 and T2T_2

Total energy of the system be T=T1+T2T=T_1+T_2

T1=m1v22T_1=\frac{m_1v2}{2}


T2=m2v22T_2=\frac{m_2 v^2}{2}


x=lsinθcosϕ2x=\frac{l\sin\theta\cos\phi}{2}


y=lsinθcosϕ2y=\frac{l\sin\theta\cos\phi}{2}

Now, taking the differentiation,

x˙2+y˙2+z˙2=v2....(i)\dot{x}^2+\dot{y}^2+\dot{z}^2=v^2 ....(i)


x˙=l2(cosϕcosθθ˙sinθsinϕϕ˙)\dot{x}=\frac{l}{2}(\cos\phi \cos\theta\dot{\theta}-\sin\theta\sin\phi \dot{\phi})


y˙=l2(sinϕcosθθ˙sinθcosϕϕ˙)\dot{y}=\frac{l}{2}(\sin\phi \cos\theta\dot{\theta}-\sin\theta\cos\phi \dot{\phi})


z˙=l2sinθθ˙\dot{z}=-\frac{l}{2}\sin\theta \dot{\theta}

Now, substituting the values in (i)

x˙2+y˙2+z˙2=l24(cos2ϕcos2θθ˙2+sin2ϕsin2θϕ˙2+sin2ϕcos2θθ˙2sin2θcos2ϕϕ˙2+sin2θθ˙2)\Rightarrow \dot{x}^2+\dot{y}^2+\dot{z}^2=\frac{l^2}{4}(\cos^2\phi \cos^2\theta\dot{\theta}^2+\sin^2\phi \sin^2\theta\dot{\phi}^2+\sin^2\phi \cos^2\theta\dot{\theta}^2-\sin^2\theta\cos^2\phi \dot{\phi}^2+\sin^2\theta\dot{\theta}^2)

v2=l24(θ˙2+sin2θϕ˙2)v^2=\frac{l^2}{4}(\dot{\theta}^2+\sin^2\theta\dot{\phi}^2)

Now, substituting the value of v2=ma2ψ˙2+ml24(θ˙2+sin2θϕ˙2)v^2=ma^2\dot{\psi}^2+\frac{ml^2}{4}(\dot{\theta}^2+\sin^2\theta\dot{\phi}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS