A calorie is a unit of heat or energy and it equals about 4.2 J where 1 J = 1 kgm2 s-2. Suppose we employ a system of units in which the unit of mass equals a kg, the unit of length equals j8 m, the. unit of time is ys. Show that a calorie has a magnitude 4.2 α-1 β-2 γ2 in terms of the new units.
"1kg_{new}=\\alpha*1{kg}"
"1{kg}=\\frac{1}{\\alpha}*1kg_{new}"
"1m_{new}=\\beta*1m"
"1m=\\frac{1}{\\beta}*1m_{new}"
"1m^2=\\frac{1}{\\beta^2}*1m^2_{new}"
"1s_{new}=\\gamma*1s"
"1s=\\frac{1}{\\gamma}*1s_{new}"
"1s^{-2}={\\gamma}^2*1s_{new}"
"4.2J=4.2[kgm^2s^{-2}]=4.2*1kg*1m^2*1s^{-2}="
"4.2*\\frac{1}{\\alpha}*1kg_{new}*\\frac{1}{\\beta^2}*1m^2_{new}*{\\gamma}^2*1s_{new}="
"4.2*{\\alpha}^{-1}*{\\beta^{-2}}*{\\gamma}^2*1kg_{new}*1m^2_{new}*1s_{new}="
"4.2{\\alpha}^{-1}{\\beta^{-2}}{\\gamma}^2[kg_{new}m^2_{new}s_{new}]"
"\\text{Answer:}\\ 4.2{\\alpha}^{-1}{\\beta^{-2}}{\\gamma}^2[kg_{new}m^2_{new}s_{new}]"
Comments
Leave a comment