A force f̂ is expressed with respect to the basis ê1 and ê2 by equation 2(3 ê1 +4 ê2) N. If the directions of ê1 makes an angle of 30 degree with f̂, find the vector ê2.
Given,
"f=6\\hat{e_1}+8 \\hat{e_2}"
The direction "\\hat{e_1}" makes angle with "=30^\\circ"
"\\Rightarrow \\tan(30^\\circ)=|\\frac{8\\hat{e_2}}{6\\hat{e_2}}|"
"\\Rightarrow |\\frac{1}{\\sqrt{3}}|=|\\frac{8\\hat{e_2}}{6\\hat{e_1}}|"
squaring both side,
"\\Rightarrow \\frac{1}{3}=\\frac{64\\hat{e_2^2}}{36\\hat{e}^2}"
"\\Rightarrow 36 \\hat{e_1^2}=3\\times64\\hat{e_2^2}"
"\\Rightarrow \\hat{e_1^2}=\\frac{16}{3}\\hat{e_2^2}"
Comments
Leave a comment