As per the given question,
Mass of the block (m)= 2kg
Spring constant "(K_1)=400N\/m"
Friction force "(f_s)=4N"
Applying the conservation of energy
a)
"\\frac{K_1 x^2}{2}=f_s.d+\\frac{mv^2}{2}+mgh"
Now, substituting the values in the equation,
"\\Rightarrow \\frac{400\\times (0.25)^2}{2}=4\\times0.45+\\frac{2\\times v^2}{2}+2\\times 9.8\\times 0.24"
"\\Rightarrow v^2 = 12.5-6.504"
"\\Rightarrow v =\\sqrt{5.9} m\/s"
b) Let the speed of the object at the point C is V
Now, again applying conservation of energy
"\\frac{K_1 x^2}{2}=f_s 2d+\\frac{mV^2}{2}"
"\\Rightarrow 12.5=4\\times 0.90+\\frac{2V^2}{2}"
"\\Rightarrow V^2=12.5-3.6"
"\\Rightarrow V=\\sqrt{8.9}m\/s"
"\\Rightarrow V=2.98 m\/s"
c) Energy stored in the spring, after the compression
"KE=\\frac{K_2 x_2^2}{2}"
"=\\frac{250\\times 0.15^2}{2}"
"=2.8125J"
Now, applying the conservation of energy
"12.5-4\\times 0.9-2.8125 = \\frac{2\\times V_2^2}{2}"
"\\Rightarrow V_2^2=6.0875"
"\\Rightarrow V_2=\\sqrt{6.0875}m\/s"
"\\Rightarrow V_2 =2.467 m\/s"
Comments
Leave a comment