Question #142675
A copper wire AB is fused at one end B to an iron wire BC which has rectangularly long shape.AB = 9.00 x 10^2 mm and BC = 4.50 x 10^2 mm. The diameter of the copper wire is 0.50 mm and that of the iron wire is 2.50.mm. The compound wire is stretched so that its length increases by a total amount of 0.1 cm
Calculate:
i) The ratio of the extension of the copper wire to that of the iron wire.
ii) The tension applied to the compound wire.
(NB: Young modulus of copper — 1.3 x 1011 Pa while that of iron = 2.0 x 1011 Pa)
1
Expert's answer
2020-11-23T10:29:11-0500

Dimension of wire AB=9.00×102mmAB=9.00 \times 10^2 mm

BC=4.50×102mm.BC = 4.50 \times 10^2 mm.

Diameter of copper wire (d)=0.5mm(d)=0.5mm

Diameter of the iron wire (D)=2.5mm(D)=2.5mm

Δl=0.1\Delta l=0.1


Young modulus of copper(Y1) =1.3×1011Pa= 1.3 \times 10^{11} Pa while that of iron(Y2)=2.0×1011Pa= 2.0 \times 10^{11} Pa

Let the extension in copper wire and the iron wires are Δl1\Delta l_1 and Δl2\Delta l_2

Δl=Δl1+Δl2\Delta l= \Delta l_1 +\Delta l_2

Let the force applied on the compound wire is F, so here force will be same on the both wire,

Y=FlAΔlY=\frac{Fl}{A\Delta l}


F=YAΔllF=\frac{YA \Delta l}{l}

We know that F1=F2F_1= F_2


Hence, Y1A1Δl1l1=Y2A2Δl2l2\frac{Y_1A_1 \Delta l_1}{l_1}=\frac{Y_2A_2 \Delta l_2}{l_2}


Δl1Δl2=Y2A2l1Y1A2l2\Rightarrow \frac{\Delta l_1}{\Delta l_2}=\frac{Y_2A_2 l_1}{Y_1 A_2l_2}


Now, substituting the values in the above equation,

Δl1Δl2=2.0×1011×(2.5×103)29×102×1031.3×1011×(0.5×103)2×4.5×102×103\Rightarrow \frac{\Delta l_1}{\Delta l_2}=\frac{ 2.0 \times 10^{11}\times (2.5\times 10^{-3})^2 9\times 10^{2}\times 10^{-3}}{ 1.3 \times 10^{11}\times (0.5\times 10^{-3})^2\times 4.5\times 10^{2}\times 10^{-3}}


Δl1Δl2=76.92\Rightarrow \frac{\Delta l_1}{\Delta l_2}=76.92

b) Now substituting the value of Δl1\Delta l_1

Δl=Δl1+Δl2\Delta l= \Delta l_1 +\Delta l_2

0.1=76.92Δl2+Δl2\Rightarrow 0.1=76.92\Delta l_2+\Delta l_2

Δl2=0.11+76.92=0.0013cm\Rightarrow \Delta l_2=\frac{0.1}{1+76.92}=0.0013cm


F=Y2A2Δl2l2\Rightarrow F=\frac{Y_2A_2\Delta l_2}{l2}

F=9×1011×π(2.5×103)2×1.3×1050.45×4\Rightarrow F=\frac{9\times 10^{11}\times \pi (2.5\times 10^{-3})^2\times 1.3\times 10^{-5}}{0.45\times 4}

F=229.621.8N\Rightarrow F=\frac{229.62}{1.8}N

Hence, net force applied on the wire will be F=127.57NF=127.57N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS