Dimension of wire "AB=9.00 \\times 10^2 mm"
"BC = 4.50 \\times 10^2 mm."
Diameter of copper wire "(d)=0.5mm"
Diameter of the iron wire "(D)=2.5mm"
"\\Delta l=0.1"
Young modulus of copper(Y1) "= 1.3 \\times 10^{11} Pa" while that of iron(Y2)"= 2.0 \\times 10^{11} Pa"
Let the extension in copper wire and the iron wires are "\\Delta l_1" and "\\Delta l_2"
"\\Delta l= \\Delta l_1 +\\Delta l_2"
Let the force applied on the compound wire is F, so here force will be same on the both wire,
"Y=\\frac{Fl}{A\\Delta l}"
"F=\\frac{YA \\Delta l}{l}"
We know that "F_1= F_2"
Hence, "\\frac{Y_1A_1 \\Delta l_1}{l_1}=\\frac{Y_2A_2 \\Delta l_2}{l_2}"
"\\Rightarrow \\frac{\\Delta l_1}{\\Delta l_2}=\\frac{Y_2A_2 l_1}{Y_1 A_2l_2}"
Now, substituting the values in the above equation,
"\\Rightarrow \\frac{\\Delta l_1}{\\Delta l_2}=\\frac{ 2.0 \\times 10^{11}\\times (2.5\\times 10^{-3})^2 9\\times 10^{2}\\times 10^{-3}}{ 1.3 \\times 10^{11}\\times (0.5\\times 10^{-3})^2\\times 4.5\\times 10^{2}\\times 10^{-3}}"
"\\Rightarrow \\frac{\\Delta l_1}{\\Delta l_2}=76.92"
b) Now substituting the value of "\\Delta l_1"
"\\Delta l= \\Delta l_1 +\\Delta l_2"
"\\Rightarrow 0.1=76.92\\Delta l_2+\\Delta l_2"
"\\Rightarrow \\Delta l_2=\\frac{0.1}{1+76.92}=0.0013cm"
"\\Rightarrow F=\\frac{Y_2A_2\\Delta l_2}{l2}"
"\\Rightarrow F=\\frac{9\\times 10^{11}\\times \\pi (2.5\\times 10^{-3})^2\\times 1.3\\times 10^{-5}}{0.45\\times 4}"
"\\Rightarrow F=\\frac{229.62}{1.8}N"
Hence, net force applied on the wire will be "F=127.57N"
Comments
Leave a comment