"E=E_k+E_p=\\frac{mV^2}{2}+\\frac{kx^2}{2}"
"\\text{where }k\\text{ is the stiffness of the spring } x\\text{ the size of compression (extension)}"
"\\text{let } V_m\\text{ maximum speed at }x = 0 \\text{ and} A =0.1 m\\text{ maximum spring tension}"
"\\text {for } x=0\\ E=\\frac{mV_m^2}{2}\\ ;\\text { for } x=A\\ E=\\frac{kA^2}{2} (1)\\text{ from here}"
"k=\\frac{mV^2_m}{A^2}"
"T=2\\pi\\sqrt{\\frac{m}{k}}=2\\pi{\\frac{A}{V_m}}\\approx\\frac{0.63}{V_m}"
"\\text{for }x=0.05;x=\\frac{A}{2}\\ E= E_p+E_k= \\frac{mV^2}{2}+\\frac{kx^2}{2}=\\frac{mV^2}{2}+\\frac{kA^2}{2*4}"
"\\text{from(1) }\\frac{mV^2}{2}+\\frac{kA^2}{2*4}=\\frac{kA^2}{2};"
"\\frac{mV^2}{2}=\\frac{kA^2}{2}-\\frac{kA^2}{8}=\\frac{3}{4}*\\frac{kA^2}{2}=\\frac{3}{4}*\\frac{mV_m^2}{2}"
"V=\\frac{\\sqrt{3}}{2}V_m"
Answer:"T\\approx\\frac{0.63}{V_m}" for spring is compressed by 5.0 cm "V=\\frac{\\sqrt{3}}{2}V_m"
Comments
Leave a comment