Question #142524
A 500 g block is attached to a spring on a frictionless horizontal surface. The block is pulled to stretch the spring by 10 cm, then gently released. A short time later, as the block passes through the equilibrium position, its speed is
m/s.

What is the block’s period of oscillation?
What is the block’s speed at the point where the spring is compressed by 5.0 cm?
1
Expert's answer
2020-11-05T10:44:54-0500

E=Ek+Ep=mV22+kx22E=E_k+E_p=\frac{mV^2}{2}+\frac{kx^2}{2}

where k is the stiffness of the spring x the size of compression (extension)\text{where }k\text{ is the stiffness of the spring } x\text{ the size of compression (extension)}

let Vm maximum speed at x=0 andA=0.1m maximum spring tension\text{let } V_m\text{ maximum speed at }x = 0 \text{ and} A =0.1 m\text{ maximum spring tension}

for x=0 E=mVm22 ; for x=A E=kA22(1) from here\text {for } x=0\ E=\frac{mV_m^2}{2}\ ;\text { for } x=A\ E=\frac{kA^2}{2} (1)\text{ from here}

k=mVm2A2k=\frac{mV^2_m}{A^2}

T=2πmk=2πAVm0.63VmT=2\pi\sqrt{\frac{m}{k}}=2\pi{\frac{A}{V_m}}\approx\frac{0.63}{V_m}

for x=0.05;x=A2 E=Ep+Ek=mV22+kx22=mV22+kA224\text{for }x=0.05;x=\frac{A}{2}\ E= E_p+E_k= \frac{mV^2}{2}+\frac{kx^2}{2}=\frac{mV^2}{2}+\frac{kA^2}{2*4}

from(1) mV22+kA224=kA22;\text{from(1) }\frac{mV^2}{2}+\frac{kA^2}{2*4}=\frac{kA^2}{2};

mV22=kA22kA28=34kA22=34mVm22\frac{mV^2}{2}=\frac{kA^2}{2}-\frac{kA^2}{8}=\frac{3}{4}*\frac{kA^2}{2}=\frac{3}{4}*\frac{mV_m^2}{2}

V=32VmV=\frac{\sqrt{3}}{2}V_m


Answer:T0.63VmT\approx\frac{0.63}{V_m} for spring is compressed by 5.0 cm V=32VmV=\frac{\sqrt{3}}{2}V_m


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS