As per the question,
Height "(h)=1m"
Friction coefficient "(\\mu) = 0.5"
Angle of cone "(\\theta ) =45^\\circ"
Let the maximum angular velocity is "\\omega"
now,
Hence, radius "(r)" of the rotating circle,
"\\tan(45^\\circ)=\\frac{r}{h}"
"r=h\\tan (45^\\circ) = 1"
So, "N= mg\\cos 45^\\circ+ mr\\omega^2 \\cos 45^\\circ"
"=\\frac{mg}{\\sqrt{2}}+\\frac{mr\\omega^2}{\\sqrt{2}}"
"=\\frac{mg+mr\\omega^2}{\\sqrt{2}}"
"=\\frac{m(g+r\\omega^2)}{\\sqrt{2}}"
So, "f_s =\\mu N = \\frac{0.5\\times m(g+r\\omega^2)}{\\sqrt{2}}=\\frac{m(g+r\\omega^2)}{2\\sqrt{2}}"
Hence, "mg\\sin 45^\\circ =\\frac{m(g+r\\omega^2)}{2\\sqrt{2}}"
"\\Rightarrow 2g=g+ r\\omega^2"
"\\Rightarrow \\omega^2=g"
"\\Rightarrow \\omega =\\sqrt{10}=\\sqrt{9.8} rad\/sec"
Comments
Leave a comment