As per the given question,
Length of the elastic rope =13m
Spring constant (k) =1.2kN/m
The height of the safety line =3.1m above the ground
The extended safety line =5.5m
The weighting of the john =86 kg
a)
We know that time period of the oscillation of the spring,
"T=2\\pi\\sqrt{\\dfrac{m}{k}}"
"\\Rightarrow T=2\\pi \\sqrt{\\dfrac{86}{1.2}}"
"\\Rightarrow T=2\\pi \\times8.46" sec
"T=53.15 sec"
b) Now after the stretching of the spring,
"\\dfrac{kx^2}{2}=mgh"
"\\Rightarrow h=\\dfrac{1.2\\times (5.5-3.1)^2}{2\\times 86\\times 9.8}"
"h=" 0.004m
c) Now, applying the conservation of energy,
"\\dfrac{kx^2}{2}=\\dfrac{mv^2}{2}"
"\\Rightarrow v=\\sqrt{\\dfrac{kx^2}{m}}"
"\\Rightarrow v=\\sqrt{\\dfrac{1.2\\times 2.4\\times 2.4}{86}}"
"v=0.28m\/sec"
Comments
Leave a comment