At the pole the total mechanical energy is "E _\np\n\u200b\t\n =G \n\n\\frac{mM}\nr\u200b\t\n ."
At the equator the body has also kinetic energy:
"E_ \ne\n\u200b\t\n =m(\\frac{G \n\nM}r\n\u200b\t\n + \n\nv ^\n2\n \n\u200b\t\n ),"
where the velocity is
"v= \n\\frac{\n2\u03c0r}\n{T}"
"E _\ne\n\u200b\t\n =m(\\frac {G \n\nM}r\n\u200b\t\n + \n\n \n\\frac{2\u03c0 \n^2\n r \n^2\n }{T^2}\n\u200b\t\n )."
Compare the two energies:
"\u03be=( \\frac{E \n_p}{\t\n \nE_ \ne\n\u200b}\t\n \n\u200b\t\n \u22121)\u22c5100\\%= \n\n\n \\frac{\n2\u03c0 ^\n2\n r ^\n3}{GMT^2}\n \n\u200b\t\n \u22c5100\\%=0.17\\%."
Here T is the length of a day (24 hours converted to seconds).
On the pole the energy is
"E_ \np\n\u200b\t\n =G \n\\frac{\nmM}r\n\u200b\t\n =62 MJ\/kg."
Comments
Leave a comment