As per the given question,
Given mass = 21 kg
Distance on the horizontal surface (d) = 23m
Speed = 0.90 m/sec
Coefficient of friction "\\mu_s =1.2"
"\\mu_k =1.1"
Friction force = "f_s=\\mu mg=1.1\\times21\\times9.8=226.38N"
work due to friction ="f_s . d=226.38\\times23=5206.74J"
Kinetic energy of the object = "\\dfrac{mv^2}{2}=\\dfrac{21\\times 0.9^2}{2}=8.505J"
Hence net work = "8.505+226.38 =234.885J"
2.
As per the given question,
mass (m)=0.3 g="3\\times 10^{-4} kg"
Spring constant (k) ="15 N\/m"
Stretched length"(\\Delta x)=5.0 \\times 10^{-2}m"
Let it will move with the velocity v,
So applying the conservation of the energy,
"\\dfrac{mv^2}{2}=\\dfrac{Kx^2}{2}"
"\\Rightarrow v=\\sqrt{\\dfrac{K}{m}}x"
"\\Rightarrow v=\\sqrt{\\dfrac{15}{0.3\\times 10^{-4}}}\\times 5\\times 10^{-2} m\/sec"
"\\Rightarrow v=7.07\\times10^{2}\\times 5\\times10^{-2}=35.35J"
Comments
Leave a comment