The Hamiltonianof a particle of mass μ in a spherically symmetric potential:
"H = \\frac{p^2}{2\\mu}+V(r)" Angular momentum operators:
"L_z = -i\\hbar \\left(x\\frac{\\partial}{\\partial y} - y\\frac{\\partial}{\\partial x}\\right), L^2 = L^2_x+L^2_y+L^2_z" Angular momentum in spherical coordinates:
"L_z = -i\\hbar \\frac{\\partial}{\\partial \\phi}, L^2 = - \\hbar^2 \\left(\\frac{1}{\\sin{\\theta}}\\frac{\\partial}{\\partial \\theta}\\left( \\sin{\\theta}\\frac{\\partial}{\\partial \\theta} \\right)+\\frac{1}{\\sin^2{\\theta}}\\frac{\\partial^2}{\\partial \\phi^2} \\right)" As the hamiltonian is independent of "\\theta, \\phi" coordinates,
"[L_z, H] =0, \\, [L^2, H] =0"
Comments
Leave a comment