The eigenvalues and eigenfunctions for a simple 1-D harmonic oscillator in the coordinate representation have the following form:
E n = ℏ ω ( n + 1 2 ) , ψ n ( ξ ) = 1 n ! 2 n π H n ( ξ ) exp ( − ξ 2 2 ) , E_n = \hbar \omega (n + \frac{1}{2}), \\
\psi_n (\xi)= \frac{1}{\sqrt{n! 2^n \sqrt{\pi}}} H_n (\xi) \exp{(-\frac{\xi^2}{2})}, E n = ℏ ω ( n + 2 1 ) , ψ n ( ξ ) = n ! 2 n π 1 H n ( ξ ) exp ( − 2 ξ 2 ) , where
ξ = x m ω ℏ \xi = x \sqrt{\frac{m \omega}{\hbar}} ξ = x ℏ mω and Hn are Hermite polynomials.
The mean potential energy of the system can be calculated as follows:
< U > n = ∫ − ∞ ∞ ψ n 2 ( ξ ) k x 2 2 d ξ = k ℏ 2 m ω ∫ − ∞ ∞ ψ n 2 ( ξ ) ξ 2 d ξ <U>_n = \int_{-\infty}^{\infty} \psi_n^2 (\xi) \frac{k x^2}{2} d\xi = \frac{k \hbar}{2 m \omega} \int_{-\infty}^{\infty} \psi_n^2 (\xi) \xi^2 d\xi < U > n = ∫ − ∞ ∞ ψ n 2 ( ξ ) 2 k x 2 d ξ = 2 mω k ℏ ∫ − ∞ ∞ ψ n 2 ( ξ ) ξ 2 d ξ Hermite polynomials satisfy the following relation:
ξ H n ( ξ ) = n H n − 1 ( ξ ) + 1 2 H n + 1 ( ξ ) \xi H_n(\xi) = n H_{n-1} (\xi) + \frac{1}{2} H_{n+1} (\xi) ξ H n ( ξ ) = n H n − 1 ( ξ ) + 2 1 H n + 1 ( ξ ) Applying this twice and taking into account the explicit expression for the eigenfunctions, we obtain:
ξ 2 ψ n ( ξ ) = 1 2 n ( n − 1 ) ψ n − 2 + ( n + 1 2 ) ψ n + 1 2 ( n + 1 ) ( n + 2 ) ψ n + 2 \xi^2 \psi_n(\xi) = \frac{1}{2} \sqrt{n(n-1)} \psi_{n-2} + (n+\frac{1}{2})\psi_n + \frac{1}{2} \sqrt{(n+1)(n+2)} \psi_{n+2} ξ 2 ψ n ( ξ ) = 2 1 n ( n − 1 ) ψ n − 2 + ( n + 2 1 ) ψ n + 2 1 ( n + 1 ) ( n + 2 ) ψ n + 2 Substituting this result into the integral for <U> and taking into account the orthonormality of the eigenfunctions, we obtain
< U > n = k ℏ 2 m ω ( n + 1 2 ) = ℏ ω 2 ( n + 1 2 ) <U>_n = \frac{k \hbar}{2 m \omega} (n + \frac{1}{2}) = \frac{\hbar \omega}{2} (n + \frac{1}{2}) < U > n = 2 mω k ℏ ( n + 2 1 ) = 2 ℏ ω ( n + 2 1 ) where we substitute
k = m ω 2 k = m \omega^2 k = m ω 2 For the ground state n = 0, hence,
< U > 0 = ℏ ω 4 <U>_0 = \frac{\hbar \omega}{4} < U > 0 = 4 ℏ ω The total energy (eigenenergy) of a harmonic oscillator is integral of motion (i.e., it conserves). Hence, applying the averaging procedure, we obtain
< E > = E = < T + U > = < T > + < U > , < T > = E − < U > <E>=E=<T+U>=<T>+<U>,\\
<T> = E - <U> < E >= E =< T + U >=< T > + < U > , < T >= E − < U > Substituting the values for the ground state, we get
< T > 0 = ℏ ω 2 − ℏ ω 4 = ℏ ω 4 . <T>_0 = \frac{\hbar \omega}{2} - \frac{\hbar \omega}{4} = \frac{\hbar \omega}{4}. < T > 0 = 2 ℏ ω − 4 ℏ ω = 4 ℏ ω . Answer:
< T > 0 = < U > 0 = ℏ ω 4 <T>_0 = <U>_0 = \frac{\hbar \omega}{4} < T > 0 =< U > 0 = 4 ℏ ω
Comments