The eigenvalues and eigenfunctions for a simple 1-D harmonic oscillator in the coordinate representation have the following form:
"E_n = \\hbar \\omega (n + \\frac{1}{2}), \\\\\n\\psi_n (\\xi)= \\frac{1}{\\sqrt{n! 2^n \\sqrt{\\pi}}} H_n (\\xi) \\exp{(-\\frac{\\xi^2}{2})}," where
"\\xi = x \\sqrt{\\frac{m \\omega}{\\hbar}}" and Hn are Hermite polynomials.
The mean potential energy of the system can be calculated as follows:
"<U>_n = \\int_{-\\infty}^{\\infty} \\psi_n^2 (\\xi) \\frac{k x^2}{2} d\\xi = \\frac{k \\hbar}{2 m \\omega} \\int_{-\\infty}^{\\infty} \\psi_n^2 (\\xi) \\xi^2 d\\xi" Hermite polynomials satisfy the following relation:
"\\xi H_n(\\xi) = n H_{n-1} (\\xi) + \\frac{1}{2} H_{n+1} (\\xi)" Applying this twice and taking into account the explicit expression for the eigenfunctions, we obtain:
"\\xi^2 \\psi_n(\\xi) = \\frac{1}{2} \\sqrt{n(n-1)} \\psi_{n-2} + (n+\\frac{1}{2})\\psi_n + \\frac{1}{2} \\sqrt{(n+1)(n+2)} \\psi_{n+2}" Substituting this result into the integral for <U> and taking into account the orthonormality of the eigenfunctions, we obtain
"<U>_n = \\frac{k \\hbar}{2 m \\omega} (n + \\frac{1}{2}) = \\frac{\\hbar \\omega}{2} (n + \\frac{1}{2})" where we substitute
"k = m \\omega^2" For the ground state n = 0, hence,
"<U>_0 = \\frac{\\hbar \\omega}{4}" The total energy (eigenenergy) of a harmonic oscillator is integral of motion (i.e., it conserves). Hence, applying the averaging procedure, we obtain
"<E>=E=<T+U>=<T>+<U>,\\\\\n<T> = E - <U>" Substituting the values for the ground state, we get
"<T>_0 = \\frac{\\hbar \\omega}{2} - \\frac{\\hbar \\omega}{4} = \\frac{\\hbar \\omega}{4}." Answer:
"<T>_0 = <U>_0 = \\frac{\\hbar \\omega}{4}"
Comments
Leave a comment