Cohesive energy of ionic solid
"F=F_{att}+F_{rep}"
"F=\\frac{A}{r^m}-\\frac{B}{r^n}"
"F_{att}=\\frac{Ae^2}{4\\pi\\epsilon r^2}"
"F_{rep}=\\frac{B}{r^n}"
Work done by system of atom equal to negative of potential energy
"W=-P.E,P.E=-W"
"PE=-\\frac{Ae^2}{4\\pi\\epsilon r}+\\frac{B}{r^n}"
Equilibrium"r=r_0"
PE=-W=U(r)=min
Differenciate U(r) at "r=r_0" W.r.t. to r is zero
"\\frac{dU(r)}{dr}|_{r=r_0}=0"
"\\frac{d}{dr}(-\\frac{Ae^2}{4\\pi\\epsilon r^2})+\\frac{d}{dr}(\\frac{B}{r_0^n})=0"
"\\frac{Ae^2}{4\\pi\\epsilon}(-\\frac{1}{r_0^2})-nBr_0^{n-1}=0"
"\\frac{Ae^2}{4\\pi\\epsilon r_0}\\alpha\\frac{1}{n}=\\frac{B}{r_0^n}"
Now potential energy
"-\\frac{Ae^2}{4\\pi\\epsilon r_0}+\\frac{Ae^2}{4\\pi \\epsilon r_0}\\times\\frac{1}{n}=P E"
"P.E=-\\frac{Ae^2}{4\\pi \\epsilon r_0}(1-\\frac{1}{n})"
Unit are ev and Jules
Cohesive energy ionic solid per molecule per ion
"PE=-\\frac{Ae^2}{4\\pi \\epsilon r_0}(1-\\frac{1}{n})\\times\\frac{1}{2}"
Comments
Leave a comment