The minimum angle between the total angular momentum vector (in a single electron atom) and the z axis is
"cos\\theta=\\frac{l (\\frac{h}{2\\pi})}{\\sqrt{l(l+1)}(\\frac{h}{2\\pi})}"
"cos28.13\u00b0=\\frac{l (\\frac{h}{2\\pi})}{\\sqrt{l(l+1)}(\\frac{h}{2\\pi})}"
"cos28.13\u00b0=\\frac{l }{\\sqrt{l(l+1)}}"
"0.88=\\frac{l }{\\sqrt{l(l+1)}}"
on solving the above equation, we get "l=3.43=3 (Approximately)"
So the total angular momentum is
"L=\\sqrt{l(l+1)}(\\frac{h}{2\\pi})=\\sqrt{3(3+1)}(\\frac{h}{2\\pi})=\\sqrt{12}(\\frac{h}{2\\pi})"
"L=\\sqrt{12}(\\frac{h}{2\\pi})=\\sqrt{12}(\\frac{6.626*10^{-34}}{2\\pi})=3.65*10^{-34} J.s"
Comments
Leave a comment