Answer to Question #168409 in Astronomy | Astrophysics for Bethv

Question #168409

A 10 keV electron is moving in a circular orbit of radius 1 m in a plane at right angles to a uniform magnetic field. What is:

(a) the speed of the electron?

(b) the magnitude of the magnetic field?

(c) the frequency of revolution?

(d) the period of motion?


1
Expert's answer
2021-03-14T19:16:04-0400

The force exerted by the magnetic field is the Lorentzian force F=qvBF = qvB .


(a) The kinetic energy of an electron is E=mev22v=2Eme=21041.61019J9.11031kg=5.9107m/s.E = \dfrac{m_ev^2}{2} \Rightarrow v = \sqrt{\dfrac{2E}{m_e}}= \sqrt{\dfrac{2\cdot10^4\cdot1.6\cdot10^{-19}\,\mathrm{J}}{9.1\cdot10^{-31}\,\mathrm{kg}}} = 5.9\cdot10^7\,\mathrm{m/s}.


(b) The electron is moving in a circular orbit, so the centripetal acceleration is equal to the acceleration from the Lorentz force

mev2R=qvBB=mevqR=9.11031kg5.9107m/s1.61019C1m=3.4104T.\dfrac{m_ev^2}{R} = qvB \Rightarrow B = \dfrac{m_ev}{qR} = \dfrac{9.1\cdot10^{-31}\,\mathrm{kg}\cdot5.9\cdot10^7\,\mathrm{m/s}}{1.6\cdot10^{-19}\,\mathrm{C}\cdot 1\,\mathrm{m}} = 3.4\cdot10^{-4}\,\mathrm{T}.

(c) The frequency is ν=1T=v2πR=5.9107m/s2π1m=9.4MHz.\nu = \dfrac{1}{T} = \dfrac{v}{2\pi R} = \dfrac{5.9\cdot10^7\,\mathrm{m/s}}{2\pi \cdot 1\,\mathrm{m}} = 9.4\,\mathrm{MHz}.


(d) T=1ν=19.4106Hz=1.1107s.T = \dfrac{1}{\nu} = \dfrac{1}{9.4\cdot10^6\,\mathrm{Hz}} = 1.1\cdot10^{-7}\,\mathrm{s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment