A 10 keV electron is moving in a circular orbit of radius 1 m in a plane at right angles to a uniform magnetic field. What is:
(a) the speed of the electron?
(b) the magnitude of the magnetic field?
(c) the frequency of revolution?
(d) the period of motion?
The force exerted by the magnetic field is the Lorentzian force "F = qvB" .
(a) The kinetic energy of an electron is "E = \\dfrac{m_ev^2}{2} \\Rightarrow v = \\sqrt{\\dfrac{2E}{m_e}}= \\sqrt{\\dfrac{2\\cdot10^4\\cdot1.6\\cdot10^{-19}\\,\\mathrm{J}}{9.1\\cdot10^{-31}\\,\\mathrm{kg}}} = 5.9\\cdot10^7\\,\\mathrm{m\/s}."
(b) The electron is moving in a circular orbit, so the centripetal acceleration is equal to the acceleration from the Lorentz force
"\\dfrac{m_ev^2}{R} = qvB \\Rightarrow B = \\dfrac{m_ev}{qR} = \\dfrac{9.1\\cdot10^{-31}\\,\\mathrm{kg}\\cdot5.9\\cdot10^7\\,\\mathrm{m\/s}}{1.6\\cdot10^{-19}\\,\\mathrm{C}\\cdot 1\\,\\mathrm{m}} = 3.4\\cdot10^{-4}\\,\\mathrm{T}."
(c) The frequency is "\\nu = \\dfrac{1}{T} = \\dfrac{v}{2\\pi R} = \\dfrac{5.9\\cdot10^7\\,\\mathrm{m\/s}}{2\\pi \\cdot 1\\,\\mathrm{m}} = 9.4\\,\\mathrm{MHz}."
(d) "T = \\dfrac{1}{\\nu} = \\dfrac{1}{9.4\\cdot10^6\\,\\mathrm{Hz}} = 1.1\\cdot10^{-7}\\,\\mathrm{s}."
Comments
Leave a comment