1) The magnitude of the Earth’s magnetic field is about 0.5 Gauss near Earth's surface. What’s the maximum possible force on an electron near the Earth’s surface with kinetic energy of 1 keV? How does this compare to the gravitational force on the electron near the Earth’s surface?
The maximum modulus of the Lorentz force is "F_L = q V B". We may obtain velocity from the kinetic energy.
"E = \\dfrac{m_eV^2}{2}, \\;\\; V = \\sqrt{\\dfrac{2E}{m_e}} = \\sqrt{\\dfrac{2\\cdot 10^3\\cdot1.6\\cdot10^{-19}\\,\\mathrm{J}}{9.1\\cdot10^{-31}\\,\\mathrm{kg}}} = 1.9\\cdot10^7\\,\\mathrm{m\/s}"
The modulus of the Lorentz force is "F_L = 1.6\\cdot10^{-19}\\,\\mathrm{C}\\cdot 1.9\\cdot10^{7}\\,\\mathrm{m\/s}\\cdot 0.5\\cdot10^{-4}\\,\\mathrm{T}= 1.52\\cdot 10^{-16}\\,\\mathrm{N}."
The gravitational force is "F_G = \\dfrac{GM_{\\oplus}m_e}{R_{\\oplus}^2} = m_e\\cdot g = 9.1\\cdot10^{-31}\\,\\mathrm{kg}\\cdot 9.81\\,\\mathrm{N\/kg} = 8.9\\cdot10^{-30}\\,\\mathrm{N}."
We can see that the Lorentz force is significantly greater than the gravitational force.
Comments
Leave a comment