Answer to Question #87586 in Trigonometry for Christen Conrad

Question #87586
Given that sine theta sinθ= 13/85 and cosine theta <​0, determine the values of the sine and cosine functions for 2thetaθ.
1
Expert's answer
2019-04-05T09:57:47-0400

Find cosθcos\theta first (cosθ<0cos\theta < 0) :

cosθ=1sin2θ=1(13/85)2=84/85cos \theta = - \sqrt{1 - sin^2 \theta} = -\sqrt {1 - (13/85)^2} = -84/85

Find sin2θsin 2 \theta :

sin2θ=2sinθcosθ=213858485=21847225sin 2 \theta = 2 sin \theta cos \theta = - 2 \cdot \frac{13}{85} \cdot \frac {84}{85} = - \frac{2184}{7225}

Find cos2θcos 2 \theta :

cos2θ=cos2θsin2θ=(8485)2(1385)2=68877225cos 2 \theta = cos^2 \theta - sin^2 \theta = (-\frac{84}{85})^2 - (\frac{13}{85})^2 = \frac{6887}{7225}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment