Question #337893

The graph of a sinusoidal function has a minimum point at (0,2)

(0,2)

left parenthesis, 0, comma, 2, right parenthesis

 and then has a maximum point at (3\pi,6)

(3π,6)

left parenthesis, 3, pi, comma, 6, right parenthesis

.


1
Expert's answer
2022-05-08T14:08:40-0400

We can write an equation of a sinusoidal function in the form

y=Asin(B(xC))+Dy = A\sin(B(x - C)) + D

The period of the graph is


T=2(3π0)=6πT=2(3\pi-0)=6\pi

Then


B=2πT=2π6π=13B=\dfrac{2\pi}{T}=\dfrac{2\pi}{6\pi}=\dfrac{1}{3}

y=Asin(13(xC))+Dy = A\sin(\dfrac{1}{3}(x - C)) + D

A=ymaxymin2=622=2A=\dfrac{y_{max}-y_{min}}{2}=\dfrac{6-2}{2}=2

y=2sin(13(xC))+Dy = 2\sin(\dfrac{1}{3}(x - C)) + D

x=0:sin(13(0C))=1=>sinC3=1x=0: \sin(\dfrac{1}{3}(0- C))=-1=>\sin \dfrac{C}{3}=1

2+D=2=>D=4-2+D=2=>D=4


x=3π:sin(13(3πC))=1=>sinC3=1x=3\pi: \sin(\dfrac{1}{3}(3\pi- C))=1=>\sin \dfrac{C}{3}=1

Let C3=π2.\dfrac{C}{3}= \dfrac{\pi}{2}. Then C=3π2C= \dfrac{3\pi}{2}


y=2sin(13(x3π2))+4y = 2\sin(\dfrac{1}{3}(x - \dfrac{3\pi}{2})) + 4




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS