A 70 lb bag of rice is being pulled by a person by applying a force F at an angle θ as shown. The force required to drag the bag is given by: F(θ)=70μ/μsinθ+cosθ where μ=0.35 is the friction coefficient. (a) Determine F(θ) for θ= 5°, 10°, 15°, 20°, 25°, 30°, 35° (b) Determine the angle θ where F is minimum. Do it by creating a vector θ with elements ranging from 5°to 35°and spacing of 0.01. CalculateF for each value of θ and then find the maximum F and associated θ with MATLAB's built-in function max
Solution.
"th=5:5:35; mu=0.35;\\newline\n% Part (a)\\newline\na) \\newline\nF=70*mu.\/(mu*sind(th)+cosd(th)) \\newline\n% Part (b) \\newline\nb) \\newline\nthb=5:0.01:35; \\newline\nFb=70*mu.\/(mu*sind(thb)+cosd(thb)); \\newline\n[Fm, i]=min(Fb);\\newline\nFmin=Fb(i)\\newline\natTheta=thb(i)\\newline\n\nCommand \\space Window:\\newline\nF =\n 23.86\\newline \n23.43 \\newline\n23.19 \\newline\n23.13 \\newline\n23.24 \\newline\n23.53 \\newline\n24.02\\newline\nFmin =\n 23.12\\newline\natTheta =\n 19.29 \\newline\nAnswer: \\newline\nF =\n 23.86\\newline \n23.43 \\newline\n23.19 \\newline\n23.13 \\newline\n23.24 \\newline\n23.53 \\newline\n24.02\\newline\nFmin =\n 23.12\\newline\natTheta =\n 19.29"
Comments
Leave a comment