The vertices of a triangle are R (3,0), S (-1,3), and T (0, -2). a) Classify the triangle by side length and b) Find the perimeter of the triangle to the nearest tenth.
R (3,0), S (-1,3), and T (0, -2)
"RS=\\sqrt{\\left(x_{1}-x_{2}\\right)^{2}+\\left(y_{1}-y_{2}\\right)^{2}}=\\sqrt{\\left(3-\\left(-1\\right)\\right)^{2}+\\left(0-3\\right)^{2}}=\\sqrt{25}=5"
"RT=\\sqrt{\\left(x_{1}-x_{2}\\right)^{2}+\\left(y_{1}-y_{2}\\right)^{2}}=\\sqrt{\\left(3-0\\right)^{2}+\\left(0-2\\right)^{2}}=\\sqrt{13}=3.6"
"ST=\\sqrt{\\left(x_{1}-x_{2}\\right)^{2}+\\left(y_{1}-y_{2}\\right)^{2}}=\\sqrt{\\left(\\left(-1\\right)-0\\right)^{2}+\\left(3-\\left(-2\\right)\\right)^{2}}=\\sqrt{26}=5.1"
So, let's find perimeter now:
"P=RS+RT+ST"
"P=5+3.6+5.1=13.7 units (nearest tenth)"
Comments
Leave a comment