S i n θ = 6 61 S i n 2 θ + C o s 2 θ = 1 C o s 2 θ = 1 − S i n 2 θ C o s θ = 1 − S i n 2 θ C o s θ = 1 − S i n 2 θ C o s θ = 1 − ( 6 61 ) 2 C o s θ = 1 − 36 61 C o s θ = 61 − 36 61 = 25 61 C o s θ = ± 5 61 Sin\space θ
=\frac{6}{\sqrt{61}}\\Sin^2\space θ
+
Cos^2\space θ
=1\\Cos^2\space θ
=1-Sin^2\space θ
\\Cos\space θ
=\sqrt{1-Sin^2\space θ
}\\\\Cos\space θ
=\sqrt{1-Sin^2 \space θ
}\\
Cos\space θ
=\sqrt{1-(\frac{6}{\sqrt{61}})^2}\\
Cos\space θ
=\sqrt{1-\frac{36}{61}}\\
Cos\space θ
=\sqrt{\frac{61-36}{61}}=\frac{\sqrt{25}}{\sqrt{61}}\\
Cos\space θ
=\pm \frac{5}{\sqrt{61}} S in θ = 61 6 S i n 2 θ + C o s 2 θ = 1 C o s 2 θ = 1 − S i n 2 θ C os θ = 1 − S i n 2 θ C os θ = 1 − S i n 2 θ C os θ = 1 − ( 61 6 ) 2 C os θ = 1 − 61 36 C os θ = 61 61 − 36 = 61 25 C os θ = ± 61 5
second quadrant C o s θ Cos\space θ C os θ is negative
= − 5 7.810 C o s θ = − 0.640 =-\frac{5}{7.810}\\
Cos\space θ
=-0.640 = − 7.810 5 C os θ = − 0.640
Comments