determine cos theta to three decimal places where sin theta=6/square root 61 and theta is an angle in the second quadrant
"Sin\\space \u03b8\n=\\frac{6}{\\sqrt{61}}\\\\Sin^2\\space \u03b8\n+\nCos^2\\space \u03b8\n=1\\\\Cos^2\\space \u03b8\n=1-Sin^2\\space \u03b8\n\\\\Cos\\space \u03b8\n=\\sqrt{1-Sin^2\\space \u03b8\n}\\\\\\\\Cos\\space \u03b8\n=\\sqrt{1-Sin^2 \\space \u03b8\n}\\\\\nCos\\space \u03b8\n=\\sqrt{1-(\\frac{6}{\\sqrt{61}})^2}\\\\\nCos\\space \u03b8\n=\\sqrt{1-\\frac{36}{61}}\\\\\n\nCos\\space \u03b8\n=\\sqrt{\\frac{61-36}{61}}=\\frac{\\sqrt{25}}{\\sqrt{61}}\\\\\n\nCos\\space \u03b8\n=\\pm \\frac{5}{\\sqrt{61}}"
second quadrant "Cos\\space \u03b8" is negative
"=-\\frac{5}{7.810}\\\\\n\n\nCos\\space \u03b8\n=-0.640"
Comments
Leave a comment