Solution:
12sin2x×cos2x+(10a−11)(cos4x−sin4x)=(2a−1)2⇒12(1−cos2x)×cos2x+(10a−11)((cos2x)2−(sin2x)2)=(2a−1)2
⇒12(1−cos2x)×cos2x+(10a−11)((cos2x+sin2x)(cos2x−sin2x))=(2a−1)2
⇒12(1−cos2x)×cos2x+(10a−11)(1(2cos2x−1))=(2a−1)2
⇒12(1−cos2x)cos2x+(10a−11)(2cos2x−1)=(2a−1)2
Put cosx=y
12(1−y2)y2+(10a−11)(2y2−1)=(2a−1)2⇒12(1−y2)y2+(10a−11)(2y2−1)=(2a−1)2⇒12y2−12y4+20ay2−22y2−10a+11=4a2+1−4a
⇒−12y4+20ay2−10y2−6a+10−4a2=0⇒6y4−10ay2+5y2+3a−5+2a2=0⇒6y4+y2(−10a+5)+3a−5+2a2=0
Put y2=t
6t2+t(−10a+5)+3a−5+2a2=0⇒6y4+y2(−10a+5)+3a−5+2a2=0
For at least one real solution, discriminant D≥0
D=B2−4AC=(−10a+5)2−4(6)(3a−5+2a2)=100a2+25−100a−24(3a−5+2a2)=100a2+25−100a−72a+120−48a2=52a2−172a+145
Now, D≥0
52a2−172a+145≥0⇒52(a−2643)2+1336≥0⇒52(a−2643)2≥−1336⇒(a−2643)2≥−1699
Trueforalla
No largest value of 'a' is defined.
Comments
Leave a comment