Find the largest value of parameter a such that equation 12sin2x * cos2x + (10a - 11)(cos4x - sin4x) = (2a-1)2 has at least one real solution.
Solution:
"12\\sin^2x \\times \\cos^2x + (10a - 11)(\\cos^4x - \\sin^4x) = (2a-1)^2\n\\\\ \\Rightarrow 12(1-\\cos^2x) \\times \\cos^2x + (10a - 11)((\\cos^2x)^2 - (\\sin^2x)^2) = (2a-1)^2"
"\\\\ \\Rightarrow 12(1-\\cos^2x) \\times \\cos^2x + (10a - 11)((\\cos^2x+\\sin^2x)(\\cos^2x - \\sin^2x)) = (2a-1)^2"
"\\\\ \\Rightarrow 12(1-\\cos^2x) \\times \\cos^2x + (10a - 11)(1(2\\cos^2x -1)) = (2a-1)^2"
"\\\\ \\Rightarrow 12(1-\\cos^2x) \\cos^2x + (10a - 11)(2\\cos^2x -1) = (2a-1)^2"
Put "\\cos x=y"
"\\\\ 12(1-y^2) y^2 + (10a - 11)(2y^2 -1) = (2a-1)^2\n\\\\ \\Rightarrow12(1-y^2) y^2 + (10a - 11)(2y^2 -1) = (2a-1)^2\n\\\\ \\Rightarrow12y^2-12y^4 + 20ay^2-22y^2-10a+11 = 4a^2+1-4a"
"\\\\ \\Rightarrow-12y^4 + 20ay^2-10y^2-6a+10-4a^2 = 0\n\\\\ \\Rightarrow6y^4 -10ay^2+5y^2+3a-5+2a^2 = 0\n\\\\ \\Rightarrow6y^4 +y^2(-10a+5)+3a-5+2a^2 = 0"
Put "y^2=t"
"6t^2 +t(-10a+5)+3a-5+2a^2 = 0\n\\\\\\Rightarrow6y^4 +y^2(-10a+5)+3a-5+2a^2 = 0"
For at least one real solution, discriminant "D\\ge 0"
"D=B^2-4AC=(-10a+5)^2-4(6)(3a-5+2a^2)\n\\\\=100a^2+25-100a-24(3a-5+2a^2)\n\\\\=100a^2+25-100a-72a+120-48a^2\n\\\\=52a^2-172a+145"
Now, "D \\ge 0"
"52a^2-172a+145\\ge0\n\\\\\\Rightarrow52\\left(a-\\frac{43}{26}\\right)^2+\\frac{36}{13}\\ge \\:0\n\\\\ \\Rightarrow 52\\left(a-\\frac{43}{26}\\right)^2\\ge \\:-\\frac{36}{13}\n\\\\ \\Rightarrow \\left(a-\\frac{43}{26}\\right)^2\\ge \\:-\\frac{9}{169}"
"\\mathrm{True\\:for\\:all}\\:a"
No largest value of 'a' is defined.
Comments
Leave a comment