Answer to Question #245413 in Trigonometry for Oliver

Question #245413

Find the largest value of parameter a such that equation 12sin2x * cos2x + (10a - 11)(cos4x - sin4x) = (2a-1)2 has at least one real solution.


1
Expert's answer
2021-10-04T18:41:51-0400

Solution:

12sin2x×cos2x+(10a11)(cos4xsin4x)=(2a1)212(1cos2x)×cos2x+(10a11)((cos2x)2(sin2x)2)=(2a1)212\sin^2x \times \cos^2x + (10a - 11)(\cos^4x - \sin^4x) = (2a-1)^2 \\ \Rightarrow 12(1-\cos^2x) \times \cos^2x + (10a - 11)((\cos^2x)^2 - (\sin^2x)^2) = (2a-1)^2

12(1cos2x)×cos2x+(10a11)((cos2x+sin2x)(cos2xsin2x))=(2a1)2\\ \Rightarrow 12(1-\cos^2x) \times \cos^2x + (10a - 11)((\cos^2x+\sin^2x)(\cos^2x - \sin^2x)) = (2a-1)^2

12(1cos2x)×cos2x+(10a11)(1(2cos2x1))=(2a1)2\\ \Rightarrow 12(1-\cos^2x) \times \cos^2x + (10a - 11)(1(2\cos^2x -1)) = (2a-1)^2

12(1cos2x)cos2x+(10a11)(2cos2x1)=(2a1)2\\ \Rightarrow 12(1-\cos^2x) \cos^2x + (10a - 11)(2\cos^2x -1) = (2a-1)^2

Put cosx=y\cos x=y

12(1y2)y2+(10a11)(2y21)=(2a1)212(1y2)y2+(10a11)(2y21)=(2a1)212y212y4+20ay222y210a+11=4a2+14a\\ 12(1-y^2) y^2 + (10a - 11)(2y^2 -1) = (2a-1)^2 \\ \Rightarrow12(1-y^2) y^2 + (10a - 11)(2y^2 -1) = (2a-1)^2 \\ \Rightarrow12y^2-12y^4 + 20ay^2-22y^2-10a+11 = 4a^2+1-4a

12y4+20ay210y26a+104a2=06y410ay2+5y2+3a5+2a2=06y4+y2(10a+5)+3a5+2a2=0\\ \Rightarrow-12y^4 + 20ay^2-10y^2-6a+10-4a^2 = 0 \\ \Rightarrow6y^4 -10ay^2+5y^2+3a-5+2a^2 = 0 \\ \Rightarrow6y^4 +y^2(-10a+5)+3a-5+2a^2 = 0

Put y2=ty^2=t

6t2+t(10a+5)+3a5+2a2=06y4+y2(10a+5)+3a5+2a2=06t^2 +t(-10a+5)+3a-5+2a^2 = 0 \\\Rightarrow6y^4 +y^2(-10a+5)+3a-5+2a^2 = 0

For at least one real solution, discriminant D0D\ge 0

D=B24AC=(10a+5)24(6)(3a5+2a2)=100a2+25100a24(3a5+2a2)=100a2+25100a72a+12048a2=52a2172a+145D=B^2-4AC=(-10a+5)^2-4(6)(3a-5+2a^2) \\=100a^2+25-100a-24(3a-5+2a^2) \\=100a^2+25-100a-72a+120-48a^2 \\=52a^2-172a+145

Now, D0D \ge 0

52a2172a+145052(a4326)2+3613052(a4326)23613(a4326)2916952a^2-172a+145\ge0 \\\Rightarrow52\left(a-\frac{43}{26}\right)^2+\frac{36}{13}\ge \:0 \\ \Rightarrow 52\left(a-\frac{43}{26}\right)^2\ge \:-\frac{36}{13} \\ \Rightarrow \left(a-\frac{43}{26}\right)^2\ge \:-\frac{9}{169}

Trueforalla\mathrm{True\:for\:all}\:a

No largest value of 'a' is defined.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment