Answer to Question #223092 in Trigonometry for Vanessam

Question #223092

Solve the following equations

2sin2x-3cosx = 0

sinx + cosx =0



1
Expert's answer
2021-09-02T09:07:39-0400

2sin2x3cosx=02sin2x-3cosx\:=\:0\:

3cos(x)+4cos(x)sin(x)=0-3\cos \:\left(x\right)+4\cos \left(x\right)\sin \left(x\right)=0

cos(x)(4sin(x)3)=0\cos \left(x\right)\left(4\sin \left(x\right)-3\right)=0

cos(x)=0or  4sin(x)3=0\cos \left(x\right)=0\quad \:\mathrm{or}\quad \:\:4\sin \left(x\right)-3=0

x=π2+2πn,x=3π2+2πn,x=arcsin(34)+2πn,x=πarcsin(34)+2πnx=\frac{\pi \:}{2}+2\pi \:n,\:x=\frac{3\pi \:}{2}+2\pi \:n,\:x=\arcsin \:\left(\frac{3}{4}\right)+2\pi \:n,\:x=\pi \:-\arcsin \:\left(\frac{3}{4}\right)+2\pi \:n

x=π2+2πn,x=3π2+2πn,x=0.84806+2πn,x=π0.84806+2πnx=\frac{\pi }{2}+2\pi n,\:x=\frac{3\pi }{2}+2\pi n,\:x=0.84806\dots +2\pi n,\:x=\pi -0.84806\dots +2\pi n


sinx+cosx=0sinx\:+\:cosx\:=0

tan(x)+1=0\tan \left(x\right)+1=0

tan(x)+11=01\tan \left(x\right)+1-1=0-1

tan(x)=1\tan \left(x\right)=-1

x=3π4+πnx=\frac{3\pi \:}{4}+\pi \:n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment