Question #216716

23.2 If f(t) = 2 sin t + 3 cost, express f(t) as a single sinusoid and hence determine its

amplitude and phase.



1
Expert's answer
2021-07-29T13:34:23-0400

Solution:

f(t)=2sint+3costf(t) = 2 \sin t + 3 \cos t

Let f(t)=Asin(t+θ)f(t)=A \sin(t+\theta) , where AA is amplitude and θ\theta is phase.

So, 2sint+3cost=Asin(t+θ)2 \sin t + 3 \cos t=A \sin(t+\theta)

2sint+3cost=A[sintcosθ+costsinθ]2sint+3cost=Asintcosθ+Acostsinθ\Rightarrow2 \sin t + 3 \cos t=A [\sin t \cos\theta+\cos t \sin \theta] \\\Rightarrow2 \sin t + 3 \cos t=A \sin t \cos\theta+A\cos t \sin \theta

On comparing both sides,

Acosθ=2,Asinθ=3tanθ=32θ=56.31°A\cos\theta=2,A\sin\theta=3 \\\Rightarrow \tan\theta=\dfrac32 \\\Rightarrow \theta=56.31\degree

Then, Acosθ=2A\cos\theta=2

Acos56.31°=2A=3.605\Rightarrow A\cos 56.31\degree=2 \\ \Rightarrow A=3.605

Thus, amplitude is 3.605 and phase is 56.31°56.31\degree .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS