By drawing a relevant triangle,prove that
tan θ = sin θ / cos θ
and
cos^2 θ + sin^2 θ = 1
Consider the right-angled triangle ABC, with AB=1, C = 90° and A= θ°.
sinθ=BCAB=BC1=BC\sin \theta =\frac{BC}{AB}=\frac{BC}{1}=BCsinθ=ABBC=1BC=BC
cosθ=ACAB=AC1=AC\cos \theta =\frac{AC}{AB}=\frac{AC}{1}=ACcosθ=ABAC=1AC=AC
tanθ=BCAC=sinθcosθ\tan \theta =\frac{BC}{AC}=\frac{\sin \theta}{\cos \theta}tanθ=ACBC=cosθsinθ
Pythagorean theorem: 1=AC2+BC2=cos2θ+sin2θ1=AC^2+BC^2=\cos ^2\theta +\sin^2\theta1=AC2+BC2=cos2θ+sin2θ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments