Question #200215

Select the graph of g(x)=3csc1/3x . Then describe the graph of g as a transformation of the graph of f(x)=cscx 


1
Expert's answer
2021-05-31T16:42:16-0400

Given the parent function is f(x)=cscxf(x)=cscx

And the final transformation function is

g(x)=3csc13xg(x)=3csc\frac{1}{3}x

The graph of parent function is:



The graph of a function h(x)=af(x)h(x)=af(x) is the vertical stretch of the graph of (fx) if |a|>1

Let a=3

Hence the graph of a function h(x)=af(x)=3csc(x)h(x)=af(x)=3csc(x) is the vertical stretch of the graph of f(x)=CSC(x)f(x)=CSC(x) .

The graph of function h(x)=3csc(x)h(x)=3csc(x) is:



The graph function g(x)=h(bx)g(x)=h(bx) is the horizontal stretch of the graph of h(x) if 0<|b|<1

Let b=13b=\frac{1}{3}

Hence the graph of a function g(x)=h(13x)=3csc(13x)g(x)=h(\frac{1}{3}x)=3csc(\frac{1}{3}x) is the horizontal stretch of the graph of h(x)=3csc(x)h(x)=3csc(x) .

The graph of a function g(x)=3csc(13x)g(x)=3csc(\frac{1}{3}x) is


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS