21 − 16 sin 2 x + 8 cos x 16 cos 2 x − 29 − 8 15 sin x = 2 \dfrac{21-16\sin^2x+8\cos x}{16\cos^2x-29-8\sqrt{15}\sin x}=2 16 cos 2 x − 29 − 8 15 sin x 21 − 16 sin 2 x + 8 cos x = 2 The Pythagorean Identity
sin 2 x + cos 2 x = 1 \sin^2x+\cos^2x=1 sin 2 x + cos 2 x = 1
Then
5 + 16 ( 1 − sin 2 x ) + 8 cos x 16 ( cos 2 x − 1 ) − 13 − 8 15 sin x = 2 \dfrac{5+16(1-\sin^2x)+8\cos x}{16(\cos^2x-1)-13-8\sqrt{15}\sin x}=2 16 ( cos 2 x − 1 ) − 13 − 8 15 sin x 5 + 16 ( 1 − sin 2 x ) + 8 cos x = 2
16 cos 2 x + 8 cos x + 5 − 16 sin 2 x − 8 15 sin x − 13 = 2 \dfrac{16\cos^2x+8\cos x+5}{-16\sin^2x-8\sqrt{15}\sin x-13}=2 − 16 sin 2 x − 8 15 sin x − 13 16 cos 2 x + 8 cos x + 5 = 2
Let u = sin x , v = cos x . u=\sin x, v=\cos x. u = sin x , v = cos x . Then
{ u 2 + v 2 = 1 16 v 2 + 8 v + 5 = − 32 u 2 − 16 15 u − 26 \begin{cases}
u^2+v^2=1 \\
16v^2+8v+5=-32u^2-16\sqrt{15}u -26
\end{cases} { u 2 + v 2 = 1 16 v 2 + 8 v + 5 = − 32 u 2 − 16 15 u − 26
{ u 2 + v 2 = 1 ( 16 v 2 + 8 v + 1 ) + 2 ( 16 u 2 + 8 15 u + 15 ) = 0 \begin{cases}
u^2+v^2=1 \\
(16v^2+8v+1)+2(16u^2+8\sqrt{15}u +15)=0
\end{cases} { u 2 + v 2 = 1 ( 16 v 2 + 8 v + 1 ) + 2 ( 16 u 2 + 8 15 u + 15 ) = 0
{ u 2 + v 2 = 1 ( 4 v + 1 ) 2 + 2 ( 4 u + 15 ) 2 = 0 \begin{cases}
u^2+v^2=1 \\
(4v+1)^2+2(4u+\sqrt{15})^2=0
\end{cases} { u 2 + v 2 = 1 ( 4 v + 1 ) 2 + 2 ( 4 u + 15 ) 2 = 0 Then
{ u 2 + v 2 = 1 4 v + 1 = 0 4 u + 15 = 0 \begin{cases}
u^2+v^2=1 \\
4v+1=0 \\
4u+\sqrt{15}=0
\end{cases} ⎩ ⎨ ⎧ u 2 + v 2 = 1 4 v + 1 = 0 4 u + 15 = 0 Check
− 16 sin 2 x − 8 15 sin x − 13 ≠ 0 -16\sin^2x-8\sqrt{15}\sin x-13\not=0 − 16 sin 2 x − 8 15 sin x − 13 = 0
− 16 u 2 − 8 15 u − 13 ≠ 0 -16u^2-8\sqrt{15}u-13\not=0 − 16 u 2 − 8 15 u − 13 = 0 u = − 15 4 : u=-\dfrac{\sqrt{15}}{4}: u = − 4 15 :
− 16 ( − 15 4 ) 2 − 8 15 ( − 15 4 ) − 13 -16(-\dfrac{\sqrt{15}}{4})^2-8\sqrt{15}(-\dfrac{\sqrt{15}}{4})-13 − 16 ( − 4 15 ) 2 − 8 15 ( − 4 15 ) − 13
= − 15 + 30 − 13 = 2 ≠ 0 =-15+30-13=2\not=0 = − 15 + 30 − 13 = 2 = 0 Hence
cos x = − 1 4 \cos x=-\dfrac{1}{4} cos x = − 4 1
x = ± ( π − arccos ( 1 4 ) ) + 2 π n , n ∈ Z x=\pm(\pi-\arccos(\dfrac{1}{4}))+2\pi n, n\in\Z x = ± ( π − arccos ( 4 1 )) + 2 πn , n ∈ Z
Comments