1) According to the Law of cosines:
32=c2+42−2⋅4c⋅cos37o
c2−8c⋅0.8+16−9=0
c2−6.4c+7=0
We got a quadratic equation ax2+bx+c=0
Its common solution will be
x1,2=2a−b±b2−4ab
In our case its particular solutions are
c1=2⋅16.4+6.42−4⋅1⋅7=26.4+12.96=26.4+3.6=3.2+1.8=5
c2=2⋅16.4−6.42−4⋅1⋅7=26.4−12.96=26.4−3.6=3.2−1.8=1.4
2) According to the Law of sines:
asinA=bsinB=csinC
Now we will find B, C
B1=arcsin(absinA)=arcsin(34⋅53)=arcsin(54)=53o
C1=arcsin(acsinA)=arcsin(35⋅53)=arcsin(1)=90o
B2=arcsin(absinA)=arcsin(34⋅53)=arcsin(54)=127o
C2=arcsin(absinA)=arcsin(31,4⋅53)=arcsin(257)=16o
Comments
Leave a comment