Answer to Question #97450 in Differential Geometry | Topology for Warsi

Question #97450
find the arc length of r(t)=(e t sin t , e t cos t ,e t)
1
Expert's answer
2019-11-08T06:19:18-0500

x(t)=etsin(t)x(t)=e^t\sin(t)

y(t)=etcos(t)y(t)=e^t\cos(t)

z(t)=etz(t)=e^t


x(t)=etsin(t)+etcos(t)x'(t)=e^t\sin(t)+e^t\cos(t)

y(t)=etcos(t)etsin(t)y'(t)=e^t\cos(t)-e^t\sin(t)

z(t)=etz'(t)=e^t


arc length of r(t)=ab(x(t))2+(y(t))2+(z(t))2dt=r(t) = \intop _a^b\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}dt=

=ab(etsint+etcost)2+(etcostetsint)2+(et)2dt==\intop _a^b\sqrt{(e^t\sin{t}+e^t\cos{t})^2+(e^t\cos{t}-e^t\sin{t})^2+(e^t)^2}dt=

=abe2tsin2t+2e2tsintcost+e2tcos2t+e2tcos2t2e2tsintcost+e2tsin2t+e2tdt==\intop _a^b\sqrt{e^{2t}\sin^{2}{t}+2e^{2t}\sin{t}\cos{t}+e^{2t}\cos^{2}{t}+e^{2t}\cos^{2}{t}-2e^{2t}\sin{t}\cos{t}+e^{2t}\sin^{2}{t}+e^{2t}}dt=

=ab2e2tsin2t+2e2tcos2t+e2tdt==\intop _a^b\sqrt{2e^{2t}\sin^{2}{t}+2e^{2t}\cos^{2}{t}+e^{2t}}dt=

=ab2e2t(sin2t+cos2t)+e2tdt==\intop _a^b\sqrt{2e^{2t}(\sin^{2}{t}+\cos^{2}{t})+e^{2t}}dt=

=ab2e2t+e2tdt==\intop _a^b\sqrt{2e^{2t}+e^{2t}}dt=

=ab3e2tdt==\intop _a^b\sqrt{3e^{2t}}dt=

=3abetdt==\sqrt{3}\intop _a^b{e^{t}}dt=

=3et ab==\sqrt{3}{e^{t}}|\ _a^b=

=3(ebea)=\sqrt{3}(e^{b}-e^{a})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment