x(t)=etsin(t)
y(t)=etcos(t)
z(t)=et
x′(t)=etsin(t)+etcos(t)
y′(t)=etcos(t)−etsin(t)
z′(t)=et
arc length of r(t)=∫ab(x′(t))2+(y′(t))2+(z′(t))2dt=
=∫ab(etsint+etcost)2+(etcost−etsint)2+(et)2dt=
=∫abe2tsin2t+2e2tsintcost+e2tcos2t+e2tcos2t−2e2tsintcost+e2tsin2t+e2tdt=
=∫ab2e2tsin2t+2e2tcos2t+e2tdt=
=∫ab2e2t(sin2t+cos2t)+e2tdt=
=∫ab2e2t+e2tdt=
=∫ab3e2tdt=
=3∫abetdt=
=3et∣ ab=
=3(eb−ea)
Comments
Leave a comment