To find the radius of curvature of the curve given in the form y = y ( x 0 ) y = y({x_0}) y = y ( x 0 ) at some point ( x 0 , y ( x 0 ) ) = ( x 0 , y 0 ) ({x_0},y({x_0})) = ({x_0},{y_0}) ( x 0 , y ( x 0 )) = ( x 0 , y 0 ) we can use the following formula
R ( x 0 ) = [ 1 + ( y ′ ( x 0 ) ) 2 ] 3 / 2 ∣ y ′ ′ ( x 0 ) ∣ R({x_0}) = \frac{{{{[1 + {{(y'({x_0}))}^2}]}^{3/2}}}}{{\left| {y''({x_0})} \right|}} R ( x 0 ) = ∣ y ′′ ( x 0 ) ∣ [ 1 + ( y ′ ( x 0 )) 2 ] 3/2
To find the derivatives we can use the method of implicit differentiation. Let's write the equation of the curve
x 3 + y 3 − 3 a x y = 0 {x^3} + {y^3} - 3axy = 0 x 3 + y 3 − 3 a x y = 0
and differentiate both halves
3 x 2 + 3 y 2 y ′ − 3 a y − 3 a x y ′ = 0 3{x^2} + 3{y^2}y' - 3ay - 3axy' = 0 3 x 2 + 3 y 2 y ′ − 3 a y − 3 a x y ′ = 0 group the terms
3 ( y 2 − a x ) y ′ + 3 x 2 − 3 a y = 0 3({y^2} - ax)y' + 3{x^2} - 3ay = 0 3 ( y 2 − a x ) y ′ + 3 x 2 − 3 a y = 0
and expressing y ′ y' y ′
y ′ = 3 a y − 3 x 2 3 ( y 2 − a x ) = a y − x 2 y 2 − a x y' = \frac{{3ay - 3{x^2}}}{{3({y^2} - ax)}} = \frac{{ay - {x^2}}}{{{y^2} - ax}} y ′ = 3 ( y 2 − a x ) 3 a y − 3 x 2 = y 2 − a x a y − x 2 Remembering this result return to the expression
3 x 2 + 3 y 2 y ′ − 3 a y − 3 a x y ′ = 0 3{x^2} + 3{y^2}y' - 3ay - 3axy' = 0 3 x 2 + 3 y 2 y ′ − 3 a y − 3 a x y ′ = 0 Differentiate it once again
6 x + 6 y ( y ′ ) 2 + 3 y 2 y ′ ′ − 3 a y ′ − 3 a y ′ − 3 a x y ′ ′ = 0 6x + 6y{(y')^2} + 3{y^2}y'' - 3ay' - 3ay' - 3axy'' = 0 6 x + 6 y ( y ′ ) 2 + 3 y 2 y ′′ − 3 a y ′ − 3 a y ′ − 3 a x y ′′ = 0 group the terms
3 ( y 2 − a x ) y ′ ′ + 6 ( x + y ( y ′ ) 2 − a y ′ ) = 0 3({y^2} - ax)y'' + 6(x + y{(y')^2} - ay') = 0 3 ( y 2 − a x ) y ′′ + 6 ( x + y ( y ′ ) 2 − a y ′ ) = 0
y ′ ′ = 2 a y ′ − y ( y ′ ) 2 − x y 2 − a x y'' = 2\frac{{ay' - y{{(y')}^2} - x}}{{{y^2} - ax}} y ′′ = 2 y 2 − a x a y ′ − y ( y ′ ) 2 − x Now we can do all calculations using x = x 0 = 3 a x = {x_0} = 3a x = x 0 = 3 a and y = y 0 = 3 a y = {y_0} = 3a y = y 0 = 3 a . Let's begin with the first derivative.
y ′ ( x 0 ) = a y 0 − x 0 2 y 0 2 − a x 0 = 3 a 2 − 9 a 2 9 a 2 − 3 a 2 = − 1 y'({x_0}) = \frac{{a{y_0} - x_0^2}}{{y_0^2 - a{x_0}}} = \frac{{3{a^2} - 9{a^2}}}{{9{a^2} - 3{a^2}}} = - 1 y ′ ( x 0 ) = y 0 2 − a x 0 a y 0 − x 0 2 = 9 a 2 − 3 a 2 3 a 2 − 9 a 2 = − 1 And with the second derivative, using the value of the first
y ′ ′ ( x 0 ) = 2 a y ′ ( x 0 ) − y 0 ( y ′ ( x 0 ) ) 2 − x 0 y 0 2 − a x 0 = 2 − a − 3 a − 3 a 9 a 2 − 3 a 2 = − 2 7 a 6 a 2 = − 7 3 a y''({x_0}) = 2\frac{{ay'({x_0}) - {y_0}{{(y'({x_0}))}^2} - {x_0}}}{{y_0^2 - a{x_0}}} = 2\frac{{ - a - 3a - 3a}}{{9{a^2} - 3{a^2}}} = - 2\frac{{7a}}{{6{a^2}}} = - \frac{7}{{3a}} y ′′ ( x 0 ) = 2 y 0 2 − a x 0 a y ′ ( x 0 ) − y 0 ( y ′ ( x 0 )) 2 − x 0 = 2 9 a 2 − 3 a 2 − a − 3 a − 3 a = − 2 6 a 2 7 a = − 3 a 7 At least we can use the formula for the radius of curvature
R ( x 0 ) = [ 1 + ( y ′ ( x 0 ) ) 2 ] 3 / 2 ∣ y ′ ′ ( x 0 ) ∣ = ( 1 + 1 ) 3 / 2 7 3 ∣ a ∣ = 3 ∣ a ∣ 7 ⋅ 2 3 / 2 = 2 2 3 ∣ a ∣ 7 = 6 2 7 ∣ a ∣ R({x_0}) = \frac{{{{[1 + {{(y'({x_0}))}^2}]}^{3/2}}}}{{\left| {y''({x_0})} \right|}} = \frac{{{{(1 + 1)}^{3/2}}}}{{\frac{7}{{3\left| a \right|}}}} = \frac{{3\left| a \right|}}{7} \cdot {2^{3/2}} = 2\sqrt 2 \frac{{3\left| a \right|}}{7} = \frac{{6\sqrt 2 }}{7}\left| a \right| R ( x 0 ) = ∣ y ′′ ( x 0 ) ∣ [ 1 + ( y ′ ( x 0 )) 2 ] 3/2 = 3 ∣ a ∣ 7 ( 1 + 1 ) 3/2 = 7 3 ∣ a ∣ ⋅ 2 3/2 = 2 2 7 3 ∣ a ∣ = 7 6 2 ∣ a ∣ This is the answer
Comments