Answer to Question #316183 in Differential Geometry | Topology for sket

Question #316183

sketch the astroid in curves also calculate its tangent vector at each point .at which point is the tangent vector zero:

(i) γ(t) = (cos^2 t, sin^2 t)

(ii) γ(t) = (e^t, t^2)


1
Expert's answer
2022-03-23T15:14:50-0400

x(t)=cos2t,y(t)=sin2(t)x+y=1,x,y[0,1]x\left( t \right) =\cos ^2t,y\left( t \right) =\sin ^2\left( t \right) \Rightarrow x+y=1,x,y\in \left[ 0,1 \right]

The tangent vector  is 0 if {x(t)=0y(t)=0{2sintcost=02sintcost=0t=πn2\left\{ \begin{array}{c} x'\left( t \right) =0\\ y'\left( t \right) =0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} 2\sin t\cos t=0\\ 2\sin t\cos t=0\\\end{array} \right. \Rightarrow t=\frac{\pi n}{2}

x(t)=et,y(t)=t2y(x)=ln2xx\left( t \right) =e^t,y\left( t \right) =t^2\Rightarrow y\left( x \right) =\ln ^2x

The tangent vector is 0 if {x(t)=0y(t)=0{et=02t=0t\left\{ \begin{array}{c} x'\left( t \right) =0\\ y'\left( t \right) =0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} e^t=0\\ 2t=0\\\end{array} \right. \Rightarrow t\in \emptyset


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment