Question #239319

The Euclidean space p2 is metric space . Specially R' (real line) R2( the complex plane) etc are metric .


1
Expert's answer
2021-09-20T16:37:30-0400


Define d : R2×R2R by d(x,y)=x1y1+x2y2x=(x1,x2),y=(y1,y2)R^2 × R^2 → R \ by \ d(x, y) = |x_1 − y_1| + |x_2 − y_2| x = (x_1,x_2), y = (y_1,y_2) . Then d is a metric on R2R^2 , called the 1ℓ_1 metric. It is also referred to informally as the “taxicab” metric, since it's the distance one would travel by taxi on a rectangular grid of streets. , or maximum, metric.



The Euclidean metric is the function d:Rn×RnR that assigns to any two vectors in Euclidean nspace x=(x1,...,xn) and y=(y1,...,yn) the number d(x,y)=((x1y1)2+...+(xnyn)2),The \ Euclidean \ metric \ is \ the \ function \ d:R^n×R^n\to R \\\ that \ assigns \ to \ any \ two \ vectors \ in \ Euclidean \ n-space\\ \ x=(x_1,...,x_n) \ and \ y=(y_1,...,y_n) \ the \ number \ \\ d(x,y)=\sqrt{((x_1-y_1)^2+...+(x_n-y_n)^2)}, \\

and so gives the "standard" distance between any two vectors in  RnR^n .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS