We can take "a,b,c>0."
We cover the ellipsoid by smooth charts of the form
"(x,y)\\mapsto (x,y,c\\sqrt{1-\\frac{x^2}{a^2 }-\\frac{y^2}{b^2 }})" and "(x,y)\\mapsto (x,y,-c\\sqrt{1-\\frac{x^2}{a^2 }-\\frac{y^2}{b^2 }})"
where "\\{(x,y)\\in(-a,a)\\times(-b,b)\\}"
Similarly, "(y,z)\\mapsto (a\\sqrt{1-\\frac{z^2}{c^2 }-\\frac{y^2}{b^2 }},y,z)" and "(y,z)\\mapsto (-a\\sqrt{1-\\frac{z^2}{c^2 }-\\frac{y^2}{b^2 }},y,z)"and lastly"(x,z)\\mapsto (x,b\\sqrt{1-\\frac{z^2}{c^2 }-\\frac{x^2}{a^2 }},z)" and "(x,z)\\mapsto (x,b\\sqrt{1-\\frac{z^2}{c^2 }-\\frac{x^2}{a^2 }},z)"These charts are smooth clearly, also these maps takes into account of all possible values of the ellipsoid since on the ellipsoid at least one of "x,y \\ or z \\neq 0." Hence is covered in the first two "(z\\neq 0)" second two "(x\\neq 0)" or last two "(y\\neq 0)" .
Hence the ellipsoid can be covered by smooth atlas and hence is a smooth surface.
Comments
Leave a comment