Answer to Question #138194 in Differential Geometry | Topology for anjali g

Question #138194
Let (a,b,c ) not equal to 0 be real constants. Show that the ellipsoid
E =((x,y,z) ∈R^3 : x^2/a^2 + y^2/b^2 + z^2/c^2 = 1) is a smooth surface.
1
Expert's answer
2020-10-14T13:55:45-0400

We can take a,b,c>0.a,b,c>0.

We cover the ellipsoid by smooth charts of the form

(x,y)(x,y,c1x2a2y2b2)(x,y)\mapsto (x,y,c\sqrt{1-\frac{x^2}{a^2 }-\frac{y^2}{b^2 }}) and (x,y)(x,y,c1x2a2y2b2)(x,y)\mapsto (x,y,-c\sqrt{1-\frac{x^2}{a^2 }-\frac{y^2}{b^2 }})

where {(x,y)(a,a)×(b,b)}\{(x,y)\in(-a,a)\times(-b,b)\}

Similarly, (y,z)(a1z2c2y2b2,y,z)(y,z)\mapsto (a\sqrt{1-\frac{z^2}{c^2 }-\frac{y^2}{b^2 }},y,z) and (y,z)(a1z2c2y2b2,y,z)(y,z)\mapsto (-a\sqrt{1-\frac{z^2}{c^2 }-\frac{y^2}{b^2 }},y,z)and lastly(x,z)(x,b1z2c2x2a2,z)(x,z)\mapsto (x,b\sqrt{1-\frac{z^2}{c^2 }-\frac{x^2}{a^2 }},z) and (x,z)(x,b1z2c2x2a2,z)(x,z)\mapsto (x,b\sqrt{1-\frac{z^2}{c^2 }-\frac{x^2}{a^2 }},z)These charts are smooth clearly, also these maps takes into account of all possible values of the ellipsoid since on the ellipsoid at least one of x,y orz0.x,y \ or z \neq 0. Hence is covered in the first two (z0)(z\neq 0) second two (x0)(x\neq 0) or last two (y0)(y\neq 0) .

Hence the ellipsoid can be covered by smooth atlas and hence is a smooth surface.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment