Question #98335
2. Let X be a continuous random variable with pdf
f(x) = cx^2 , |x| ≤ 1,
0, otherwise,
where the parameter c is constant (with respect to x).
(a) Find the constant c.
(b) Compute the cumulative distribution function F(x) of X.
(c) Use F(x) (from b) to determine P(X ≥ 1/2).
(d) Find E(X) and V (X).
1
Expert's answer
2019-11-11T10:49:53-0500

a) We know that for f(x)f(x) to be a probability distribution


f(x)dx=1\displaystyle\int_{-\infin}^\infin f(x)dx=1

We integrate f(x)f(x) with respect to x,x, set the result equal to 1 and solve for c.c.


f(x)dx=11cx2dx=c[x33]11=\displaystyle\int_{-\infin}^\infin f(x)dx=\displaystyle\int_{-1}^{1} cx^2dx=c\big[{x^3 \over 3}\big]\begin{array}{c} 1 \\ -1 \end{array}=

=c(133(1)33)=23c=1=c\big({1^3 \over 3}-{(-1)^3 \over 3}\big)={2 \over 3}c=1

c=32c={3 \over 2}

b) Cumulative distribution function (cdf):


F(x)=P(Xx)=xf(x)dxF(x)=P(X\leq x)=\displaystyle\int_{-\infin}^x f(x)dx

1x32x2dx=32[x33]x1=x32+12\displaystyle\int_{-1}^x {3 \over 2}x^2 dx ={3 \over 2}\big[{x^3 \over 3}\big]\begin{array}{c} x \\ -1 \end{array}={x^3 \over 2}+{1 \over 2}

F(x)={0if x<1x32+12if 1x<11if x1F(x) = \begin{cases} 0 &\text{if } x<-1 \\ {x^3 \over 2}+{1 \over 2} &\text{if }-1\leq x<1 \\ 1 &\text{if } x\geq 1 \end{cases}

c)


P(X12)=1P(X<12)=1P(X12)=P(X\geq {1 \over 2})=1-P(X< {1 \over 2})=1-P(X\leq {1 \over 2})=

=1F(12)=1((12)32+12)=716=1-F({1 \over 2})=1-({({1 \over 2})^3 \over 2}+{1 \over 2})={7 \over 16}

d)


μ=E(X)=xf(x)dx=1132x3dx=\mu=E(X)=\displaystyle\int_{-\infin}^\infin xf(x)dx=\displaystyle\int_{-1}^{1} {3 \over 2}x^3dx=

=32[x44]11=0={3 \over 2}\big[{x^4 \over 4}\big]\begin{array}{c} 1 \\ -1 \end{array}=0

Var(X)=σ2=E[(Xμ)2]=(x0)2f(x)dx=Var(X)=\sigma^2=E[(X-\mu)^2]=\displaystyle\int_{-\infin}^\infin (x-0)^2f(x)dx=

=1132x4dx=32[x55]11=35=\displaystyle\int_{-1}^{1} {3 \over 2}x^4dx={3 \over 2}\big[{x^5 \over 5}\big]\begin{array}{c} 1 \\ -1 \end{array}={3 \over 5}


E(X)=0E(X)=0Var(X)=35Var(X)={3 \over 5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS