Answer to Question #97238 in Statistics and Probability for Juliet Beglaryan

Question #97238
1. The thickness x of a protective coating applied to a conductor designed to work in corrosive conditions follows a uniform distribution over the interval [20, 40] microns. a) What is the probability of the thickness of the protective coating applied to the conductor to be less than 35 microns?b) Find the probability of the thickness of the protective coating applied to the conductor to be between 23 and 32 microns.c) Find the mean, standard deviation of the thickness of the protective coating. Find also the probability that the coating is less than 35 microns thick.
1
Expert's answer
2021-02-24T09:21:02-0500

We know that XU(20,40)X \sim U(20,40) with probability density

pX(x)={0x[a,b]1bax[a,b]{p_X}(x)=\begin{cases} 0 & x \notin [a,b] \\ \frac{1}{{b - a}} & x \in [a,b]\end{cases}

Let's find the probability density as


FX(x)=P(X<x)=xpX(ξ)dξ{F_X}(x) = P(X < x) = \int\limits_{ - \infty }^x {{p_X}(\xi )d\xi }

At the interval x(,a]x \in ( - \infty ,a] we get FX(x)=x0dξ=0{F_X}(x) = \int\limits_{ - \infty }^x {0d\xi } = 0

At the interval x[a,b]x \in [a,b] we get FX(x)=ax1badξ=ξbaax=xaba{F_X}(x) = \int\limits_a^x {\frac{1}{{b - a}}d\xi } = \left. {\frac{\xi }{{b - a}}} \right|_a^x = \frac{{x - a}}{{b - a}}

At the interval x[b,+)x \in [b, + \infty ) we get FX(x)=baba+b+0dξ=1{F_X}(x) = \frac{{b - a}}{{b - a}} + \int\limits_b^{ + \infty } {0d\xi } = 1

Thus we get


FX(x)={0x<axabaaxb1x>b{F_X}(x)=\begin{cases} 0 & x <a \\ \frac{{x - a}}{{b - a}} & a \leqslant x \leqslant b \\ 1 & x > b \end{cases}

a) We asked to find P(X<35)P(X < 35)


P(X<35)=FX(35)=35204020=34P(X < 35) = {F_X}(35) = \frac{{35 - 20}}{{40 - 20}} = \frac{3}{4}

b) We asked to find P(23<X<32)P(23 < X < 32)


P(23<X<32)=FX(32)FX(23)=3220402023204020=920P(23 < X < 32) = {F_X}(32) - {F_X}(23) = \frac{{32 - 20}}{{40 - 20}} - \frac{{23 - 20}}{{40 - 20}} = \frac{9}{{20}}

c) We asked to find the expected value and standard deviation. Let's calculate the expected value using it's definition


EX=+xpX(x)dx=abxbadx=x22(ba)ab=b2a22(ba)=a+b2\mathbb{E}X = \int\limits_{ - \infty }^{ + \infty } {x{p_X}(x)dx} = \int\limits_a^b {\frac{x}{{b - a}}dx} = \left. {\frac{{{x^2}}}{{2(b - a)}}} \right|_a^b = \frac{{{b^2} - {a^2}}}{{2(b - a)}} = \frac{{a + b}}{2}


Thus in our case


EX=a+b2=20+402=30\mathbb{E}X = \frac{{a + b}}{2} = \frac{{20 + 40}}{2} = 30

To find the standart deviatin we need to find the variance at the first. To find the variance let's find the second moment


E(X2)=+x2pX(x)dx=abx2badx=x33(ba)ab=a2+ab+b23\mathbb{E}({X^2}) = \int\limits_{ - \infty }^{ + \infty } {{x^2}{p_X}(x)dx} = \int\limits_a^b {\frac{{{x^2}}}{{b - a}}dx} = \left. {\frac{{{x^3}}}{{3(b - a)}}} \right|_a^b = \frac{{{a^2} + ab + {b^2}}}{3}


Now we can calculate the variance


Var(X)=E(X2)E2(X)=a2+ab+b23(a+b)222=112(ba)2\operatorname{Var} (X) = \mathbb{E}({X^2}) - {\mathbb{E}^2}(X) = \frac{{{a^2} + ab + {b^2}}}{3} - \frac{{{{(a + b)}^2}}}{{{2^2}}} = \frac{1}{{12}}{(b - a)^2}

And the standard deviations is


σ(X)=112(ab)2=ba23\sigma (X) = \sqrt {\frac{1}{{12}}{{(a - b)}^2}} = \frac{{b - a}}{{2\sqrt 3 }}

In our case


σ(X)=402023=103\sigma (X) = \frac{{40 - 20}}{{2\sqrt 3 }} = \frac{{10}}{{\sqrt 3 }}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
24.02.21, 16:20

Dear Azlan Ikram, thank you for correcting us.

Azlan Ikram
17.02.21, 08:25

Its (x-a)/(b-a) for a

Leave a comment

LATEST TUTORIALS
New on Blog