Answer to Question #91983 in Statistics and Probability for joe

Question #91983
A number x is selected at random in the interval [-1, 2]. Let the events A={x<0}, B={|x-0.5|<0.5}, and C=x>0.75. Find P[A|B], P[B|C], P[A|C^c] and P[B|C^c].
1
Expert's answer
2019-07-29T09:45:46-0400

Assume that the probability of any subinterval I of [-1, 2] is proportional to its length


"P(I)=k \\cdot length(I)"

If we let "I=[-2, 1]," then we must have


"1=P(S)=P([-2, 1])=k\\cdot length([-2,1])=k\\cdot 3""k={1 \\over 3}""P[A]={1 \\over 3}length([-1,0))={1 \\over 3}\\cdot 1={1 \\over 3}"

"|x-0.5|<0.5=>-0.5<x-0.5<0.5=>0<x<1"


"P[B]={1 \\over 3}length((0,1))={1 \\over 3}\\cdot 1={1 \\over 3}"

"P[C]={1 \\over 3}length((0.75,2))={1 \\over 3}\\cdot 1.25={5 \\over 12}"

"P[A|B]={P[A\\cap B] \\over P[B]}=0"

"P[B\\cap C]={1 \\over 3}length((0.75,1))={1 \\over 3}\\cdot 0.25={1 \\over 12}"

"P[B|C]={P[B\\cap C] \\over P[C]}={{1 \\over 12} \\over {5 \\over 12}}={1 \\over 5}"

"P[C^C]=1-{5 \\over 12}={7 \\over 12}"

"P[A\\cap C^C]={1 \\over 3}length([-1,0))={1 \\over 3}\\cdot 1={1 \\over 3}"


"P[A|C^C]={P[A\\cap C^C] \\over P[C^C]}={{1 \\over 3} \\over {7 \\over 12}}={4 \\over 7}"

"P[B\\cap C^C]={1 \\over 3}length(0,0.75])={1 \\over 3}\\cdot 0.75={1 \\over 4}"

"P[B|C^C]={P[B\\cap C^C] \\over P[C^C]}={{1 \\over 4} \\over {7 \\over 12}}={3 \\over 7}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS