Assume that the probability of any subinterval I of [-1, 2] is proportional to its length
If we let "I=[-2, 1]," then we must have
"|x-0.5|<0.5=>-0.5<x-0.5<0.5=>0<x<1"
"P[C]={1 \\over 3}length((0.75,2))={1 \\over 3}\\cdot 1.25={5 \\over 12}"
"P[A|B]={P[A\\cap B] \\over P[B]}=0"
"P[B\\cap C]={1 \\over 3}length((0.75,1))={1 \\over 3}\\cdot 0.25={1 \\over 12}"
"P[B|C]={P[B\\cap C] \\over P[C]}={{1 \\over 12} \\over {5 \\over 12}}={1 \\over 5}"
"P[C^C]=1-{5 \\over 12}={7 \\over 12}"
"P[A\\cap C^C]={1 \\over 3}length([-1,0))={1 \\over 3}\\cdot 1={1 \\over 3}"
"P[B\\cap C^C]={1 \\over 3}length(0,0.75])={1 \\over 3}\\cdot 0.75={1 \\over 4}"
"P[B|C^C]={P[B\\cap C^C] \\over P[C^C]}={{1 \\over 4} \\over {7 \\over 12}}={3 \\over 7}"
Comments
Leave a comment