The percentile coefficient of Kurtosis, denoted as "K_p," is defined in terms of quartiles and percentiles as
"Q_1=L_1+\\bigg[{\\sum f_i\\times 1\/4-C_f \\over f_1}\\bigg]\\cdot C_1"
"\\sum f_i\\times 1\/4=382\\times 1\/4=95.5, L_1=30,""C_f=50, C_1=10, f_1=69"
"Q_1=30+\\bigg[{95.5-50 \\over 69}\\bigg]\\cdot 10=36.5942"
"Q_3=L_3+\\bigg[{\\sum f_i\\times 3\/4-C_f \\over f_3}\\bigg]\\cdot C_3"
"\\sum f_i\\times 3\/4=382\\times 3\/4=286.5, L_3=60,""C_f=279, C_3=10, f_3=52"
"Q_3=60+\\bigg[{286.5-279 \\over 52}\\bigg]\\cdot 10=61.4423"
"P_k=L_1+\\bigg[{\\sum f_i\\times (k\/100)-C_f \\over f_k}\\bigg]\\cdot C_k"
"k=90, \\sum f_i\\times (k\/100)=382\\times (90\/100)=343.8,""L_1=70, C_f=331, C_{90}=10, f_{90}=40"
"P_{90}=70+\\bigg[{343.8-331 \\over 40}\\bigg]\\cdot 10=73.20"
"k=10, \\sum f_i\\times (k\/100)=382\\times (10\/100)=38.2,""L_1=20, C_f=0, C_{10}=10, f_{10}=50"
The percentile coefficient of Kurtosis
Since "K_p=0.2236<0.263", the curve is leptokurtic or thin.
Comments
Leave a comment