Average queue length is average number of customers in system "L."
We have an M/M/1 system. We also have:
"\\lambda=3, \\mu_1=12, \\mu_2=5""\\rho={\\lambda \\over \\mu}"Hence
Little’s rule provide the following results:
"W=W_q+{1 \\over \\mu}"
For the M/M/1 queue, we can prove that
"L_{q2}={({3 \\over 5})^2 \\over 1-{3 \\over 5}}={9 \\over 10}"
"W_{q1}={L_{q1} \\over \\lambda}={1 \\over 12(3)}={1 \\over 36}"
"W_{q2}={L_{q2} \\over \\lambda}={9 \\over 10(3)}={3 \\over 10}"
"W_1=W_{q1}+{1 \\over \\mu_1}={1 \\over 36}+{1 \\over 12}={1 \\over 9}"
"W_2=W_{q2}+{1 \\over \\mu_2}={9 \\over 10}+{1 \\over 5}={11 \\over 10}"
"L_1=\\lambda W_1=3({1 \\over 9})={1 \\over 3}"
"L_2=\\lambda W_2=3({11 \\over 10})={33 \\over 10}"
The average queue length is "{1 \\over 3}" during early morning and "{33 \\over 10}" during afternoon peak period.
The expected waiting time in the queue is "{1 \\over 36} min" during early morning and "{3 \\over 10} min" during afternoon peak period.
Comments
Leave a comment