Question #89248
Determine the z-score value in each of the following scenarios:
a. What z-score value separates the top 8% of a normal distribution from the bottom
92%?
b. What z-score value separates the top 72% of a normal distribution from the bottom
28%?
c. What z-score value form the boundaries for the middle 58% of a normal
distribution?
d. What z-score value separates the middle 45% from the rest of the distribution?
1
Expert's answer
2019-05-08T11:59:45-0400
a.   P(Zz)=0.92,P(Z>z)=0.08a.\ \ \ P(Z\leq z^*)=0.92, P(Z>z^*)=0.08z=1.4051z^*=1.4051

b.   P(Zz)=0.28,P(Z>z)=0.72b.\ \ \ P(Z\leq z^*)=0.28, P(Z>z^*)=0.72z=0.5828z^*=-0.5828

c.   P(Zz1)=0.50.29=0.21,P(Z<z2)=0.5+0.29=0.79c.\ \ \ P(Z\leq z_1^*)=0.5-0.29=0.21, P(Z<z_2^*)=0.5+0.29=0.79

z=±0.8064z^*=\plusmn0.8064

So the interval is (0.8064,0.8064)(-0.8064, 0.8064)



d.   P(Zz1)=0.50.225=0.275,P(Z<z2)=0.5+0.225=0.725d. \ \ \ P(Z\leq z_1^*)=0.5-0.225=0.275, P(Z<z_2^*)=0.5+0.225=0.725

z=±0.5978z^*=\plusmn0.5978

So the interval is(0.5978,0.5978).(-0.5978, 0.5978).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS