Let 𝑋 be a continuous random variable. The cumulative distribution function (CDF) for a random variable 𝑋 is defined by
We have that
"x_2>x_1>0 => F(x_2)=1-\\dfrac{1}{1+{x_2}^2}>1-\\dfrac{1}{1+{x_1}^2}=F(x_1)"
The CDF is non-decreasing function.
"\\lim\\limits_{x\\rarr0^+}F(x)=\\lim\\limits_{x\\rarr0^+}(1-\\dfrac{1}{1+{x}^2})=1-\\dfrac{1}{1+(0)^2}=0"
"\\lim\\limits_{x\\rarr\\infin}F(x)=\\lim\\limits_{x\\rarr\\infin}(1-\\dfrac{1}{1+{x}^2})=1-0=1"
The probability that the plant will die within 2 hours is equal to
The probability that the plant will survive more than 3 hours is equal to
The function f(x) is the so- called density function (PDF) if
The cumulative distribution function (CDF)
Then
We have that
"(1-\\dfrac{1}{1+{x}^2})'=-(-\\dfrac{2x}{(1+{x}^2)^2})=\\dfrac{2x}{(1+{x}^2)^2}"
Thus, the corresponding density function is
"P(X\\leq2)=\\dfrac{4}{5}=0.8"
"P(X>3)=\\dfrac{1}{10}=0.1"
"f(x) = \\begin{cases}\n 0 &\\text{,\\ } x<0 \\\\\n {\\dfrac{2x}{(1+{x}^2)^2}} &\\text{, \\ } x\\geq0\n\\end{cases}"
Comments
Leave a comment