Question #88411
The probability that a certain plant will die within x hours in a certain environment is
estimated to be [ 1–(1+x²)^–1]. Determine the probabilities that the plant will die
within 2 hours and that it will survive more than 3 hours. Find the corresponding density
function.
1
Expert's answer
2019-04-29T11:46:03-0400

Let 𝑋 be a continuous random variable. The cumulative distribution function (CDF) for a random variable 𝑋 is defined by



F(x)=P(Xx)=f(x)dxF(x)=P(X \leq x)=\displaystyle\int_{-\infin}^\infin f(x)dx

We have that


F(x)={0x<0111+x2,  x0F(x) = \begin{cases} 0 &\text{,\ } x<0 \\ {1-\dfrac{1}{1+x^2}} &\text{, \ } x\geq0 \end{cases}

x2>x1>0=>F(x2)=111+x22>111+x12=F(x1)x_2>x_1>0 => F(x_2)=1-\dfrac{1}{1+{x_2}^2}>1-\dfrac{1}{1+{x_1}^2}=F(x_1)

The CDF is non-decreasing function.


F(0)=111+(0)2=0F(0)=1-\dfrac{1}{1+(0)^2}=0

limx0+F(x)=limx0+(111+x2)=111+(0)2=0\lim\limits_{x\rarr0^+}F(x)=\lim\limits_{x\rarr0^+}(1-\dfrac{1}{1+{x}^2})=1-\dfrac{1}{1+(0)^2}=0

limxF(x)=limx(111+x2)=10=1\lim\limits_{x\rarr\infin}F(x)=\lim\limits_{x\rarr\infin}(1-\dfrac{1}{1+{x}^2})=1-0=1

The probability that the plant will die within 2 hours is equal to


P(X2)=F(2)F(0)=111+(2)2(111+(0)2)=P(X\leq2)=F(2)-F(0)=1-\dfrac{1}{1+(2)^2}-(1-\dfrac{1}{1+(0)^2})==45=0.8=\dfrac{4}{5}=0.8

The probability that the plant will survive more than 3 hours is equal to


P(X>3)=1P(X3)=1(111+(3)2)=P(X>3)=1-P(X\leq3)=1-(1-\dfrac{1}{1+(3)^2})==110=0.1=\dfrac{1}{10}=0.1

The function f(x) is the so- called density function (PDF) if


f(x)dx=1\displaystyle\int_{-\infin}^\infin f(x)dx=1

The cumulative distribution function (CDF)


F(x)=P(Xx)=f(x)dxF(x)=P(X \leq x)=\displaystyle\int_{-\infin}^\infin f(x)dx

Then


f(x)=F(x)f(x)=F'(x)

We have that


F(x)={0x<0111+x2,  x0F(x) = \begin{cases} 0 &\text{,\ } x<0 \\ {1-\dfrac{1}{1+x^2}} &\text{, \ } x\geq0 \end{cases}

(111+x2)=(2x(1+x2)2)=2x(1+x2)2(1-\dfrac{1}{1+{x}^2})'=-(-\dfrac{2x}{(1+{x}^2)^2})=\dfrac{2x}{(1+{x}^2)^2}

Thus, the corresponding density function is


f(x)={0x<02x(1+x2)2,  x0f(x) = \begin{cases} 0 &\text{,\ } x<0 \\ {\dfrac{2x}{(1+{x}^2)^2}} &\text{, \ } x\geq0 \end{cases}

P(X2)=45=0.8P(X\leq2)=\dfrac{4}{5}=0.8


P(X>3)=110=0.1P(X>3)=\dfrac{1}{10}=0.1


f(x)={0x<02x(1+x2)2,  x0f(x) = \begin{cases} 0 &\text{,\ } x<0 \\ {\dfrac{2x}{(1+{x}^2)^2}} &\text{, \ } x\geq0 \end{cases}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS