For a single mean from a normal distribution with known variance, a two-sided, 100(1 – α)% confidence interval is calculated by
Xˉ−zα/2∗nσ≤μ≤Xˉ+zα/2∗nσ For a 95 % confidence interval
zα/2=z0.025=1.96
We have that
Xˉ=60,σ2=25,n=16
60−1.96∗1625≤μ≤60+1.96∗1625
57.55≤μ≤62.45
Hence
95%CI [57.55,62.45]
Comments