Question #350586

9. The data for the car rental company is given:

Company                    Cars                Revenue

   A                            63                   7

   B                            29                   3.9

   C                            20.8                2.1

   D                           19.1                2.8

   E                            13.4                1.4

   F                             8.5                  1.5

Compute the linear correlation coefficient for the data and find the equation of regression line.


1
Expert's answer
2022-06-15T05:52:40-0400

X=[63,29,20.8,19.1,13.4,8.5]X=[ 63, 29, 20.8, 19.1, 13.4, 8.5]

Y=[7,3.9,2.1,2.8,1.4,1.5]Y=[7, 3.9, 2.1, 2.8, 1.4, 1.5]

n=6n=6


1. Linear correlation coefficient r=n(xy)(x)(y)[nx2(x)2][ny2(y)2]r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2-(\sum x)^2]\cdot[n\sum y^2-(\sum y)^2]}}


x=63+29+20.8+19.1+13.4+8.5=153.8\sum x=63+29+20.8+19.1+13.4+8.5=153.8

y=7+3.9+2.1+2.8+1.4+1.5=18.7\sum y = 7+3.9+2.1+2.8+1.4+1.5=18.7

x2=632+292+20.82+19.12+13.42+8.52=5859.26\sum x^2=63^2+29^2+20.8^2+19.1^2+13.4^2+8.5^2=5859.26

y2=72+3.92+2.12+2.82+1.42+1.52=80.67\sum y^2= 7^2+3.9^2+2.1^2+2.8^2+1.4^2+1.5^2=80.67

xy=637+293.9+20.82.1+19.12.8+13.41.4+8.51.5=682.77\sum xy=63\cdot7+29\cdot3.9+20.8\cdot2.1+19.1\cdot2.8+13.4\cdot1.4+8.5\cdot1.5=682.77


(x)2=153.82=23654.44(\sum x)^2=153.8^2=23654.44

(y)2=18.72=349.69(\sum y)^2=18.7^2=349.69

(x)(y)=153.818.7=2876.06(\sum x)(\sum y)=153.8\cdot18.7=2876.06


r=6682.772876.06[65859.2623654.44][680.67349.69]=0.9819798r=\frac{6\cdot682.77-2876.06}{\sqrt{[6\cdot5859.26-23654.44]\cdot[6\cdot80.67-349.69]}}=0.9819798



2. Equation of regression line y=a+bxy=a+bx,

where a=(y)(x2)(x)(xy)n(x2)(x)2a=\frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2}, b=n(xy)(x)(y)n(x2)(x)2b=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2}.


a=18.75859.26153.8682.7765859.2623654.44=0.39632105a=\frac{18.7\cdot5859.26-153.8\cdot682.77}{6\cdot5859.26-23654.44}=0.39632105

b=6682.772876.0665859.2623654.44=0.10612531b=\frac{6\cdot682.77-2876.06}{6\cdot5859.26-23654.44}=0.10612531


y=0.39632105+0.10612531xy=0.39632105+0.10612531x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS