X = [ 63 , 29 , 20.8 , 19.1 , 13.4 , 8.5 ] X=[ 63, 29, 20.8, 19.1, 13.4, 8.5] X = [ 63 , 29 , 20.8 , 19.1 , 13.4 , 8.5 ]
Y = [ 7 , 3.9 , 2.1 , 2.8 , 1.4 , 1.5 ] Y=[7, 3.9, 2.1, 2.8, 1.4, 1.5] Y = [ 7 , 3.9 , 2.1 , 2.8 , 1.4 , 1.5 ]
n = 6 n=6 n = 6
1. Linear correlation coefficient r = n ( ∑ x y ) − ( ∑ x ) ( ∑ y ) [ n ∑ x 2 − ( ∑ x ) 2 ] ⋅ [ n ∑ y 2 − ( ∑ y ) 2 ] r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2-(\sum x)^2]\cdot[n\sum y^2-(\sum y)^2]}} r = [ n ∑ x 2 − ( ∑ x ) 2 ] ⋅ [ n ∑ y 2 − ( ∑ y ) 2 ] n ( ∑ x y ) − ( ∑ x ) ( ∑ y )
∑ x = 63 + 29 + 20.8 + 19.1 + 13.4 + 8.5 = 153.8 \sum x=63+29+20.8+19.1+13.4+8.5=153.8 ∑ x = 63 + 29 + 20.8 + 19.1 + 13.4 + 8.5 = 153.8
∑ y = 7 + 3.9 + 2.1 + 2.8 + 1.4 + 1.5 = 18.7 \sum y = 7+3.9+2.1+2.8+1.4+1.5=18.7 ∑ y = 7 + 3.9 + 2.1 + 2.8 + 1.4 + 1.5 = 18.7
∑ x 2 = 6 3 2 + 2 9 2 + 20. 8 2 + 19. 1 2 + 13. 4 2 + 8. 5 2 = 5859.26 \sum x^2=63^2+29^2+20.8^2+19.1^2+13.4^2+8.5^2=5859.26 ∑ x 2 = 6 3 2 + 2 9 2 + 20. 8 2 + 19. 1 2 + 13. 4 2 + 8. 5 2 = 5859.26
∑ y 2 = 7 2 + 3. 9 2 + 2. 1 2 + 2. 8 2 + 1. 4 2 + 1. 5 2 = 80.67 \sum y^2= 7^2+3.9^2+2.1^2+2.8^2+1.4^2+1.5^2=80.67 ∑ y 2 = 7 2 + 3. 9 2 + 2. 1 2 + 2. 8 2 + 1. 4 2 + 1. 5 2 = 80.67
∑ x y = 63 ⋅ 7 + 29 ⋅ 3.9 + 20.8 ⋅ 2.1 + 19.1 ⋅ 2.8 + 13.4 ⋅ 1.4 + 8.5 ⋅ 1.5 = 682.77 \sum xy=63\cdot7+29\cdot3.9+20.8\cdot2.1+19.1\cdot2.8+13.4\cdot1.4+8.5\cdot1.5=682.77 ∑ x y = 63 ⋅ 7 + 29 ⋅ 3.9 + 20.8 ⋅ 2.1 + 19.1 ⋅ 2.8 + 13.4 ⋅ 1.4 + 8.5 ⋅ 1.5 = 682.77
( ∑ x ) 2 = 153. 8 2 = 23654.44 (\sum x)^2=153.8^2=23654.44 ( ∑ x ) 2 = 153. 8 2 = 23654.44
( ∑ y ) 2 = 18. 7 2 = 349.69 (\sum y)^2=18.7^2=349.69 ( ∑ y ) 2 = 18. 7 2 = 349.69
( ∑ x ) ( ∑ y ) = 153.8 ⋅ 18.7 = 2876.06 (\sum x)(\sum y)=153.8\cdot18.7=2876.06 ( ∑ x ) ( ∑ y ) = 153.8 ⋅ 18.7 = 2876.06
r = 6 ⋅ 682.77 − 2876.06 [ 6 ⋅ 5859.26 − 23654.44 ] ⋅ [ 6 ⋅ 80.67 − 349.69 ] = 0.9819798 r=\frac{6\cdot682.77-2876.06}{\sqrt{[6\cdot5859.26-23654.44]\cdot[6\cdot80.67-349.69]}}=0.9819798 r = [ 6 ⋅ 5859.26 − 23654.44 ] ⋅ [ 6 ⋅ 80.67 − 349.69 ] 6 ⋅ 682.77 − 2876.06 = 0.9819798
2. Equation of regression line y = a + b x y=a+bx y = a + b x ,
where a = ( ∑ y ) ( ∑ x 2 ) − ( ∑ x ) ( ∑ x y ) n ( ∑ x 2 ) − ( ∑ x ) 2 a=\frac{(\sum y)(\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2} a = n ( ∑ x 2 ) − ( ∑ x ) 2 ( ∑ y ) ( ∑ x 2 ) − ( ∑ x ) ( ∑ x y ) , b = n ( ∑ x y ) − ( ∑ x ) ( ∑ y ) n ( ∑ x 2 ) − ( ∑ x ) 2 b=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2} b = n ( ∑ x 2 ) − ( ∑ x ) 2 n ( ∑ x y ) − ( ∑ x ) ( ∑ y ) .
a = 18.7 ⋅ 5859.26 − 153.8 ⋅ 682.77 6 ⋅ 5859.26 − 23654.44 = 0.39632105 a=\frac{18.7\cdot5859.26-153.8\cdot682.77}{6\cdot5859.26-23654.44}=0.39632105 a = 6 ⋅ 5859.26 − 23654.44 18.7 ⋅ 5859.26 − 153.8 ⋅ 682.77 = 0.39632105
b = 6 ⋅ 682.77 − 2876.06 6 ⋅ 5859.26 − 23654.44 = 0.10612531 b=\frac{6\cdot682.77-2876.06}{6\cdot5859.26-23654.44}=0.10612531 b = 6 ⋅ 5859.26 − 23654.44 6 ⋅ 682.77 − 2876.06 = 0.10612531
y = 0.39632105 + 0.10612531 x y=0.39632105+0.10612531x y = 0.39632105 + 0.10612531 x
Comments