X=[63,29,20.8,19.1,13.4,8.5]
Y=[7,3.9,2.1,2.8,1.4,1.5]
n=6
1. Linear correlation coefficient r=[n∑x2−(∑x)2]⋅[n∑y2−(∑y)2]n(∑xy)−(∑x)(∑y)
∑x=63+29+20.8+19.1+13.4+8.5=153.8
∑y=7+3.9+2.1+2.8+1.4+1.5=18.7
∑x2=632+292+20.82+19.12+13.42+8.52=5859.26
∑y2=72+3.92+2.12+2.82+1.42+1.52=80.67
∑xy=63⋅7+29⋅3.9+20.8⋅2.1+19.1⋅2.8+13.4⋅1.4+8.5⋅1.5=682.77
(∑x)2=153.82=23654.44
(∑y)2=18.72=349.69
(∑x)(∑y)=153.8⋅18.7=2876.06
r=[6⋅5859.26−23654.44]⋅[6⋅80.67−349.69]6⋅682.77−2876.06=0.9819798
2. Equation of regression line y=a+bx,
where a=n(∑x2)−(∑x)2(∑y)(∑x2)−(∑x)(∑xy), b=n(∑x2)−(∑x)2n(∑xy)−(∑x)(∑y).
a=6⋅5859.26−23654.4418.7⋅5859.26−153.8⋅682.77=0.39632105
b=6⋅5859.26−23654.446⋅682.77−2876.06=0.10612531
y=0.39632105+0.10612531x
Comments