9. The data for the car rental company is given:
Company Cars Revenue
A 63 7
B 29 3.9
C 20.8 2.1
D 19.1 2.8
E 13.4 1.4
F 8.5 1.5
Compute the linear correlation coefficient for the data and find the equation of regression line.
"X=[ 63, 29, 20.8, 19.1, 13.4, 8.5]"
"Y=[7, 3.9, 2.1, 2.8, 1.4, 1.5]"
"n=6"
1. Linear correlation coefficient "r=\\frac{n(\\sum xy)-(\\sum x)(\\sum y)}{\\sqrt{[n\\sum x^2-(\\sum x)^2]\\cdot[n\\sum y^2-(\\sum y)^2]}}"
"\\sum x=63+29+20.8+19.1+13.4+8.5=153.8"
"\\sum y = 7+3.9+2.1+2.8+1.4+1.5=18.7"
"\\sum x^2=63^2+29^2+20.8^2+19.1^2+13.4^2+8.5^2=5859.26"
"\\sum y^2= 7^2+3.9^2+2.1^2+2.8^2+1.4^2+1.5^2=80.67"
"\\sum xy=63\\cdot7+29\\cdot3.9+20.8\\cdot2.1+19.1\\cdot2.8+13.4\\cdot1.4+8.5\\cdot1.5=682.77"
"(\\sum x)^2=153.8^2=23654.44"
"(\\sum y)^2=18.7^2=349.69"
"(\\sum x)(\\sum y)=153.8\\cdot18.7=2876.06"
"r=\\frac{6\\cdot682.77-2876.06}{\\sqrt{[6\\cdot5859.26-23654.44]\\cdot[6\\cdot80.67-349.69]}}=0.9819798"
2. Equation of regression line "y=a+bx",
where "a=\\frac{(\\sum y)(\\sum x^2)-(\\sum x)(\\sum xy)}{n(\\sum x^2)-(\\sum x)^2}", "b=\\frac{n(\\sum xy)-(\\sum x)(\\sum y)}{n(\\sum x^2)-(\\sum x)^2}".
"a=\\frac{18.7\\cdot5859.26-153.8\\cdot682.77}{6\\cdot5859.26-23654.44}=0.39632105"
"b=\\frac{6\\cdot682.77-2876.06}{6\\cdot5859.26-23654.44}=0.10612531"
"y=0.39632105+0.10612531x"
Comments
Leave a comment