Question #348868

A population consist of three numbers (2, 4, 6). Consider all possible samples of size 2 which can be drawn without

replacement from the population. Find the following:


1
Expert's answer
2022-06-08T14:22:11-0400

1. We have population values 2,4,6, population size N=3 and sample size n=2.

Mean of population (μ)(\mu) = 2+4+63=4\dfrac{2+4+6}{3}=4

2.Variance of population 



σ2=Σ(xixˉ)2n=4+0+43=83\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{4+0+4}{3}=\dfrac{8}{3}σ=σ2=831.633\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{8}{3}}\approx1.633

Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=3C2=3.^{N}C_n=^{3}C_2=3.

noSampleSamplemean (xˉ)12,4322,6434,65\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 2,4 & 3 \\ \hdashline 2 & 2,6 & 4 \\ \hdashline 3 & 4,6 & 5 \\ \hdashline \end{array}





Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)31/33/39/341/34/316/351/35/325/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 3 & 1/3 & 3/3 & 9/3 \\ \hdashline 4 & 1/3 & 4/3 & 16/3 \\ \hdashline 5 & 1/3 & 5/3 & 25/3 \\ \end{array}



3. Mean of sampling distribution 



μXˉ=E(Xˉ)=Xˉif(Xˉi)=123=4=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{12}{3}=4=\mu



4. The variance of sampling distribution 



Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=503(4)2=23=σ2n(NnN1)=\dfrac{50}{3}-(4)^2=\dfrac{2}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})



5.


σXˉ=σXˉ2=230.8165\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{2}{3}}\approx0.8165

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS