1. We have population values 2,4,6, population size N=3 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 2 + 4 + 6 3 = 4 \dfrac{2+4+6}{3}=4 3 2 + 4 + 6 = 4
2.Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 4 + 0 + 4 3 = 8 3 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{4+0+4}{3}=\dfrac{8}{3} σ 2 = n Σ ( x i − x ˉ ) 2 = 3 4 + 0 + 4 = 3 8
σ = σ 2 = 8 3 ≈ 1.633 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{8}{3}}\approx1.633 σ = σ 2 = 3 8 ≈ 1.633
Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 3 C 2 = 3. ^{N}C_n=^{3}C_2=3. N C n = 3 C 2 = 3.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 2 , 4 3 2 2 , 6 4 3 4 , 6 5 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 2,4 & 3 \\
\hdashline
2 & 2,6 & 4 \\
\hdashline
3 & 4,6 & 5 \\
\hdashline
\end{array} n o 1 2 3 S am pl e 2 , 4 2 , 6 4 , 6 S am pl e m e an ( x ˉ ) 3 4 5
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 3 1 / 3 3 / 3 9 / 3 4 1 / 3 4 / 3 16 / 3 5 1 / 3 5 / 3 25 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
3 & 1/3 & 3/3 & 9/3 \\
\hdashline
4 & 1/3 & 4/3 & 16/3 \\
\hdashline
5 & 1/3 & 5/3 & 25/3 \\
\end{array} X ˉ 3 4 5 f ( X ˉ ) 1/3 1/3 1/3 X ˉ f ( X ˉ ) 3/3 4/3 5/3 X ˉ 2 f ( X ˉ ) 9/3 16/3 25/3
3. Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 12 3 = 4 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{12}{3}=4=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3 12 = 4 = μ
4. The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 50 3 − ( 4 ) 2 = 2 3 = σ 2 n ( N − n N − 1 ) =\dfrac{50}{3}-(4)^2=\dfrac{2}{3}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 3 50 − ( 4 ) 2 = 3 2 = n σ 2 ( N − 1 N − n )
5.
σ X ˉ = σ X ˉ 2 = 2 3 ≈ 0.8165 \sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{2}{3}}\approx0.8165 σ X ˉ = σ X ˉ 2 = 3 2 ≈ 0.8165
Comments