Question #348786

The table below shows the time in hours (𝑥) spent by six (6) students in playing


Clash of Clansand the scores of these students got on a math test. Solve for


Pearson Product Correlation Coeffcient. Construct a Scatter Plot.


𝑥 1 2 3 4 5 6


𝑦 30 25 25 10 15 5

1
Expert's answer
2022-06-09T14:59:06-0400

In order to compute the regression coefficients, the following table needs to be used:


XYXYX2Y21303019002255046253257596254104016100515752522565303625Sum=21110300912500\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 1 & 30 & 30 & 1 & 900 \\ \hdashline & 2 & 25 & 50 & 4 & 625 \\ \hdashline & 3 & 25 & 75 & 9 & 625 \\ \hdashline & 4 & 10 & 40 & 16 & 100 \\ \hdashline & 5 & 15 & 75 & 25 & 225 \\ \hdashline & 6 & 5 & 30 & 36 & 25 \\ \hdashline Sum= & 21 & 110 & 300 & 91 & 2500 \\ \hdashline \end{array}Xˉ=1niXi=216=72\bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{21}{6}=\dfrac{7}{2}




Yˉ=1niYi=1106=553\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{110}{6}=\dfrac{55}{3}




SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=912126=352=91-\dfrac{21^2}{6}=\dfrac{35}{2}




SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=250011026=14503=2500-\dfrac{110^2}{6}=\dfrac{1450}{3}




SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=30021(110)6=85=300-\dfrac{21(110)}{6}=-85




r=SSXYSSXXSSYY=85352(14503)r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{-85}{\sqrt{\dfrac{35}{2}(\dfrac{1450}{3})}}=0.9242=-0.9242


Strong negative correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS