Consider all samples of size 4 from this population: 3, 6, 10, 13, 15, 20
a. Make a sampling distribution of the sample means
b. Compute the mean of the sample means
c. Compute the variance and standard deviation of the sample means
We have population values 3, 6, 10, 13, 15, 20, population size N=6 and sample size n=4.
Mean of population "(\\mu)" = "\\dfrac{3+6+10+13+15+20}{6}=\\dfrac{67}{6}"
Variance of population
a. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_4=15."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 3,6,10,13 & 32\/4 \\\\\n \\hdashline\n 2 & 3,6,10,15 & 34\/4 \\\\\n \\hdashline\n 3 & 3,6,10,20 & 39\/4\\\\\n \\hdashline\n 4 & 3,6,13,15 & 37\/4 \\\\\n \\hdashline\n 5 & 3,6,13,20 & 42\/4 \\\\\n \\hdashline\n 6 & 3,6,15,20 & 44\/4 \\\\\n \\hdashline\n 7 & 3,10,13,15 & 41\/4\\\\\n \\hdashline\n 8 & 3,10,13,20 & 46\/4 \\\\\n \\hdashline\n 9 & 3,10,15,20, & 48\/4 \\\\\n \\hdashline\n 10 & 3, 13,15,20 & 51\/4 \\\\\n \\hdashline\n 11 & 6,10,13,15 & 44\/4 \\\\\n \\hdashline\n 12 & 6, 10,13,20 & 49\/4 \\\\\n \\hdashline\n 13 & 6, 10, 15,20 & 51\/4 \\\\\n \\hdashline\n 14 & 6,13,15,20 & 54\/4 \\\\\n \\hdashline\n 15 & 10,13,15,20 & 58\/4 \\\\\n \\hdashline\n\\end{array}"b. Mean of sampling distribution
c. The variance of sampling distribution
Comments
Leave a comment