We have population values 3, 6, 10, 13, 15, 20, population size N=6 and sample size n=4.
Mean of population ( μ ) (\mu) ( μ ) = 3 + 6 + 10 + 13 + 15 + 20 6 = 67 6 \dfrac{3+6+10+13+15+20}{6}=\dfrac{67}{6} 6 3 + 6 + 10 + 13 + 15 + 20 = 6 67
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 216 ( 2401 + 961 + 49 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{216}(2401+961+49 σ 2 = n Σ ( x i − x ˉ ) 2 = 216 1 ( 2401 + 961 + 49 + 121 + 529 + 2809 ) = 1145 36 +121+529+2809)=\dfrac{1145}{36} + 121 + 529 + 2809 ) = 36 1145 σ = σ 2 = 1145 36 ≈ 5.64 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{1145}{36}}\approx5.64 σ = σ 2 = 36 1145 ≈ 5.64 a. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 6 C 4 = 15. ^{N}C_n=^{6}C_4=15. N C n = 6 C 4 = 15.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 3 , 6 , 10 , 13 32 / 4 2 3 , 6 , 10 , 15 34 / 4 3 3 , 6 , 10 , 20 39 / 4 4 3 , 6 , 13 , 15 37 / 4 5 3 , 6 , 13 , 20 42 / 4 6 3 , 6 , 15 , 20 44 / 4 7 3 , 10 , 13 , 15 41 / 4 8 3 , 10 , 13 , 20 46 / 4 9 3 , 10 , 15 , 20 , 48 / 4 10 3 , 13 , 15 , 20 51 / 4 11 6 , 10 , 13 , 15 44 / 4 12 6 , 10 , 13 , 20 49 / 4 13 6 , 10 , 15 , 20 51 / 4 14 6 , 13 , 15 , 20 54 / 4 15 10 , 13 , 15 , 20 58 / 4 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 3,6,10,13 & 32/4 \\
\hdashline
2 & 3,6,10,15 & 34/4 \\
\hdashline
3 & 3,6,10,20 & 39/4\\
\hdashline
4 & 3,6,13,15 & 37/4 \\
\hdashline
5 & 3,6,13,20 & 42/4 \\
\hdashline
6 & 3,6,15,20 & 44/4 \\
\hdashline
7 & 3,10,13,15 & 41/4\\
\hdashline
8 & 3,10,13,20 & 46/4 \\
\hdashline
9 & 3,10,15,20, & 48/4 \\
\hdashline
10 & 3, 13,15,20 & 51/4 \\
\hdashline
11 & 6,10,13,15 & 44/4 \\
\hdashline
12 & 6, 10,13,20 & 49/4 \\
\hdashline
13 & 6, 10, 15,20 & 51/4 \\
\hdashline
14 & 6,13,15,20 & 54/4 \\
\hdashline
15 & 10,13,15,20 & 58/4 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S am pl e 3 , 6 , 10 , 13 3 , 6 , 10 , 15 3 , 6 , 10 , 20 3 , 6 , 13 , 15 3 , 6 , 13 , 20 3 , 6 , 15 , 20 3 , 10 , 13 , 15 3 , 10 , 13 , 20 3 , 10 , 15 , 20 , 3 , 13 , 15 , 20 6 , 10 , 13 , 15 6 , 10 , 13 , 20 6 , 10 , 15 , 20 6 , 13 , 15 , 20 10 , 13 , 15 , 20 S am pl e m e an ( x ˉ ) 32/4 34/4 39/4 37/4 42/4 44/4 41/4 46/4 48/4 51/4 44/4 49/4 51/4 54/4 58/4
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 32 / 4 1 / 15 32 / 60 1024 / 240 34 / 4 1 / 15 34 / 60 1156 / 240 37 / 4 1 / 15 37 / 60 1369 / 240 39 / 4 1 / 15 39 / 60 1521 / 240 41 / 4 1 / 15 41 / 60 1681 / 240 42 / 4 1 / 15 42 / 60 1764 / 240 44 / 4 2 / 15 88 / 60 3872 / 240 46 / 4 1 / 15 46 / 60 2116 / 240 48 / 4 1 / 15 48 / 60 2304 / 240 49 / 4 1 / 20 49 / 60 2401 / 240 51 / 4 2 / 15 102 / 60 5202 / 240 54 / 4 1 / 15 54 / 60 2916 / 240 58 / 4 1 / 15 58 / 60 3364 / 240 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
32/4 & 1/15 & 32/60 & 1024/240 \\
\hdashline
34/4 & 1/15 & 34/60 & 1156/240 \\
\hdashline
37/4 & 1/15 & 37/60 & 1369/240 \\
\hdashline
39/4 & 1/15 & 39/60 & 1521/240 \\
\hdashline
41/4 & 1/15 & 41/60 & 1681/240 \\
\hdashline
42/4 & 1/15 & 42/60 & 1764/240 \\
\hdashline
44/4 & 2/15 & 88/60 & 3872/240 \\
\hdashline
46/4 & 1/15 & 46/60 & 2116/240 \\
\hdashline
48/4 & 1/15 & 48/60 & 2304/240 \\
\hdashline
49/4 & 1/20 & 49/60 & 2401/240 \\
\hdashline
51/4 & 2/15 & 102/60 & 5202/240 \\
\hdashline
54/4 & 1/15 & 54/60 & 2916/240 \\
\hdashline
58/4 & 1/15 & 58/60 & 3364/240 \\
\hdashline
\end{array} X ˉ 32/4 34/4 37/4 39/4 41/4 42/4 44/4 46/4 48/4 49/4 51/4 54/4 58/4 f ( X ˉ ) 1/15 1/15 1/15 1/15 1/15 1/15 2/15 1/15 1/15 1/20 2/15 1/15 1/15 X ˉ f ( X ˉ ) 32/60 34/60 37/60 39/60 41/60 42/60 88/60 46/60 48/60 49/60 102/60 54/60 58/60 X ˉ 2 f ( X ˉ ) 1024/240 1156/240 1369/240 1521/240 1681/240 1764/240 3872/240 2116/240 2304/240 2401/240 5202/240 2916/240 3364/240
b. Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 670 60 = 67 6 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{670}{60}=\dfrac{67}{6}=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 60 670 = 6 67 = μ
c. The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 30690 240 − ( 67 6 ) 2 = 229 72 = σ 2 n ( N − n N − 1 ) =\dfrac{30690}{240}-(\dfrac{67}{6})^2=\dfrac{229}{72}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 240 30690 − ( 6 67 ) 2 = 72 229 = n σ 2 ( N − 1 N − n )
σ X ˉ = 229 72 ≈ 1.78 \sigma_{\bar{X}}=\sqrt{\dfrac{229}{72}}\approx1.78 σ X ˉ = 72 229 ≈ 1.78
Comments