We have population values 3, 6, 10, 13, 15, 20, population size N=6 and sample size n=4.
Mean of population (μ) = 63+6+10+13+15+20=667
Variance of population
σ2=nΣ(xi−xˉ)2=2161(2401+961+49+121+529+2809)=361145σ=σ2=361145≈5.64a. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=6C4=15.
no123456789101112131415Sample3,6,10,133,6,10,153,6,10,203,6,13,153,6,13,203,6,15,203,10,13,153,10,13,203,10,15,20,3,13,15,206,10,13,156,10,13,206,10,15,206,13,15,2010,13,15,20Samplemean (xˉ)32/434/439/437/442/444/441/446/448/451/444/449/451/454/458/4
Xˉ32/434/437/439/441/442/444/446/448/449/451/454/458/4f(Xˉ)1/151/151/151/151/151/152/151/151/151/202/151/151/15Xˉf(Xˉ)32/6034/6037/6039/6041/6042/6088/6046/6048/6049/60102/6054/6058/60Xˉ2f(Xˉ)1024/2401156/2401369/2401521/2401681/2401764/2403872/2402116/2402304/2402401/2405202/2402916/2403364/240
b. Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=60670=667=μ
c. The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=24030690−(667)2=72229=nσ2(N−1N−n)
σXˉ=72229≈1.78
Comments