Question #348646

Consider all samples of size 4 from this population: 3, 6, 10, 13, 15, 20



a. Make a sampling distribution of the sample means



b. Compute the mean of the sample means



c. Compute the variance and standard deviation of the sample means

1
Expert's answer
2022-06-07T13:16:11-0400

We have population values 3, 6, 10, 13, 15, 20, population size N=6 and sample size n=4.

Mean of population (μ)(\mu) = 3+6+10+13+15+206=676\dfrac{3+6+10+13+15+20}{6}=\dfrac{67}{6}

Variance of population 




σ2=Σ(xixˉ)2n=1216(2401+961+49\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{216}(2401+961+49+121+529+2809)=114536+121+529+2809)=\dfrac{1145}{36}σ=σ2=1145365.64\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{1145}{36}}\approx5.64

a. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=6C4=15.^{N}C_n=^{6}C_4=15.

noSampleSamplemean (xˉ)13,6,10,1332/423,6,10,1534/433,6,10,2039/443,6,13,1537/453,6,13,2042/463,6,15,2044/473,10,13,1541/483,10,13,2046/493,10,15,20,48/4103,13,15,2051/4116,10,13,1544/4126,10,13,2049/4136,10,15,2051/4146,13,15,2054/41510,13,15,2058/4\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 3,6,10,13 & 32/4 \\ \hdashline 2 & 3,6,10,15 & 34/4 \\ \hdashline 3 & 3,6,10,20 & 39/4\\ \hdashline 4 & 3,6,13,15 & 37/4 \\ \hdashline 5 & 3,6,13,20 & 42/4 \\ \hdashline 6 & 3,6,15,20 & 44/4 \\ \hdashline 7 & 3,10,13,15 & 41/4\\ \hdashline 8 & 3,10,13,20 & 46/4 \\ \hdashline 9 & 3,10,15,20, & 48/4 \\ \hdashline 10 & 3, 13,15,20 & 51/4 \\ \hdashline 11 & 6,10,13,15 & 44/4 \\ \hdashline 12 & 6, 10,13,20 & 49/4 \\ \hdashline 13 & 6, 10, 15,20 & 51/4 \\ \hdashline 14 & 6,13,15,20 & 54/4 \\ \hdashline 15 & 10,13,15,20 & 58/4 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)32/41/1532/601024/24034/41/1534/601156/24037/41/1537/601369/24039/41/1539/601521/24041/41/1541/601681/24042/41/1542/601764/24044/42/1588/603872/24046/41/1546/602116/24048/41/1548/602304/24049/41/2049/602401/24051/42/15102/605202/24054/41/1554/602916/24058/41/1558/603364/240\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 32/4 & 1/15 & 32/60 & 1024/240 \\ \hdashline 34/4 & 1/15 & 34/60 & 1156/240 \\ \hdashline 37/4 & 1/15 & 37/60 & 1369/240 \\ \hdashline 39/4 & 1/15 & 39/60 & 1521/240 \\ \hdashline 41/4 & 1/15 & 41/60 & 1681/240 \\ \hdashline 42/4 & 1/15 & 42/60 & 1764/240 \\ \hdashline 44/4 & 2/15 & 88/60 & 3872/240 \\ \hdashline 46/4 & 1/15 & 46/60 & 2116/240 \\ \hdashline 48/4 & 1/15 & 48/60 & 2304/240 \\ \hdashline 49/4 & 1/20 & 49/60 & 2401/240 \\ \hdashline 51/4 & 2/15 & 102/60 & 5202/240 \\ \hdashline 54/4 & 1/15 & 54/60 & 2916/240 \\ \hdashline 58/4 & 1/15 & 58/60 & 3364/240 \\ \hdashline \end{array}



b. Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=67060=676=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{670}{60}=\dfrac{67}{6}=\mu


c. The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=30690240(676)2=22972=σ2n(NnN1)=\dfrac{30690}{240}-(\dfrac{67}{6})^2=\dfrac{229}{72}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})




σXˉ=229721.78\sigma_{\bar{X}}=\sqrt{\dfrac{229}{72}}\approx1.78

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS