1) We have population values 1,3,5,8,10, population size N=5 and sample size n=2.
Mean of population (μ) = 51+3+5+8+10=5.4
Variance of population
σ2=nΣ(xi−xˉ)2=51(19.36+5.76+0.16+6.76+21.16)=10.64
2) Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=5C2=10.
no12345678910Sample1,31,51,81,103,53,83,105,85,108,10Samplemean (xˉ)4/26/29/211/28/211/213/213/215/218/2
Xˉ4/26/28/29/211/213/215/218/2f(Xˉ)1/101/101/101/102/102/101/101/10Xˉf(Xˉ)4/206/208/209/2022/2026/2015/2018/20Xˉ2f(Xˉ)16/4036/4064/4081/40242/40338/40225/40324/40
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=20108=5.4=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=401316−(5.4)2=3.99=nσ2(N−1N−n)
Comments