In order to compute the regression coefficients, the following table needs to be used:
Sum=X21.222.724.226.629.530.9155.1Y1796165714351573147614039340XY38075.237613.934727.441841.84354243352.7239152.6X2449.44515.29585.64707.56870.25954.814082.99Y232256162745649205922524743292178576196840914651804Xˉ=n1i∑Xi=6155.1
=25.85
Yˉ=n1i∑Yi=69340
=1556.666667
SSXX=i∑Xi2−n1(i∑Xi)2
=4082.99−6155.12=73.655
SSYY=i∑Yi2−n1(i∑Yi)2
=14651804−6(9340)2=112537.333333
SSXY=i∑XiYi−n1(i∑Xi)(i∑Yi)
=239152.6−6155.1(9340)=−2286.400000
b=SSXXSSXY=4082.99−6155.12239152.6−6155.1(9340)
=−31.042
a=Yˉ−bXˉ=2359.1029
Therefore, we find that the regression equation is:
Y=2359.1029−31.042X
X=29.1Y=2359.1029−31.042(29.1)=1456The total sales for the day in Php if the temperature is 29.1 is Php1456.
Comments