Answer to Question #343722 in Statistics and Probability for Yen

Question #343722

The population of each room in a classroom consist of the numbers 10, 11, 15, and 9. List all the sample size of 3 from this population and compute the mean of each sample

1
Expert's answer
2022-05-24T15:52:44-0400

We have population values 9,10,11,15, population size N=4 and sample size n=3.

Mean of population (μ)(\mu) = 9+10+11+154=11.25\dfrac{9+10+11+15}{4}=11.25

Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=4C3=4.^{N}C_n=^{4}C_3=4.

noSampleSamplemean (xˉ)19,10,1130/329,10,1534/339,11,1535/3410,11,1536/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 9,10,11 & 30/3 \\ \hdashline 2 & 9,10,15 & 34/3 \\ \hdashline 3 & 9,11,15 & 35/3 \\ \hdashline 4 & 10,11,15 & 36/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)30/31/430/12900/3634/31/434/121156/3635/31/435/121225/3636/31/436/121296/36\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 30/3 & 1/4 & 30/12 & 900/36 \\ \hdashline 34/3 & 1/4 & 34/12 & 1156/36 \\ \hdashline 35/3 & 1/4& 35/12 & 1225/36 \\ \hdashline 36/3 & 1/4 & 36/12 & 1296/36 \\ \hdashline \end{array}



Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=13512=11.25=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{135}{12}=11.25=\mu




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment