Question #342981

QUESTION 25

Suppose that X is a binomial random variable with n D 25 and p D 0:5: Calculate

(a) the probability P .X D 15/: (2)

(b) the probability P .X  16/: (4)

(c) the expected value of X. (2)

(d) the variance of X. (3)



1
Expert's answer
2022-05-20T11:44:50-0400

XBin(25,0.5)X\sim Bin (25, 0.5)

(a)


P(X=15)=(2515)(0.5)15(10.5)2515P(X=15)=\dbinom{25}{15}(0.5)^{15}(1-0.5)^{25-15}

=0.09741663933=0.09741663933

(b)


P(X>16)=P(X=17)+P(X=18)P(X>16)=P(X=17)+P(X=18)

+P(X=19)+P(X=20)+P(X=19)+P(X=20)

+P(X=21)+P(X=22)+P(X=21)+P(X=22)

+P(X=23)+P(X=24)+P(X=23)+P(X=24)

+P(X=25)+P(X=25)

=(2517)(0.5)17(10.5)2517=\dbinom{25}{17}(0.5)^{17}(1-0.5)^{25-17}

+(2518)(0.5)18(10.5)2518+\dbinom{25}{18}(0.5)^{18}(1-0.5)^{25-18}

+(2519)(0.5)19(10.5)2519+\dbinom{25}{19}(0.5)^{19}(1-0.5)^{25-19}

+(2520)(0.5)25(10.5)2520+\dbinom{25}{20}(0.5)^{25}(1-0.5)^{25-20}

+(2521)(0.5)21(10.5)2521+\dbinom{25}{21}(0.5)^{21}(1-0.5)^{25-21}

+(2522)(0.5)22(10.5)2522+\dbinom{25}{22}(0.5)^{22}(1-0.5)^{25-22}

+(2523)(0.5)23(10.5)2523+\dbinom{25}{23}(0.5)^{23}(1-0.5)^{25-23}

+(2524)(0.5)23(10.5)2524+\dbinom{25}{24}(0.5)^{23}(1-0.5)^{25-24}

+(2525)(0.5)23(10.5)2525+\dbinom{25}{25}(0.5)^{23}(1-0.5)^{25-25}

=0.05387607217=0.05387607217

P(X16)=P(X=16)+P(X>16)P(X\ge16)=P(X=16)+P(X>16)

=(2516)(0.5)16(10.5)2516+P(X>16)=\dbinom{25}{16}(0.5)^{16}(1-0.5)^{25-16}+P(X>16)

=0.11476147175=0.11476147175

(c)


E(X)=np=25(0.5)=12.5E(X)=np=25(0.5)=12.5



(d)


Var(X)=np(1p)=25(0.5)(10.5)=6.25Var(X)=np(1-p)=25(0.5)(1-0.5)=6.25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS